• Novian Dwisatria Graduate Program of Crop Science, Faculty of Agriculture, Sriwijaya University, Jalan Padang Selasa 524, Pa-lembang, South Sumatra 30139, Indonesia.
  • Yulia Pujiastuti Plant Protection Study Program, Faculty of Agriculture, Sriwijaya University. Jalan Raya Palembang-Prabumulih km 32, Indralaya, Indonesia.
  • Chandra Irsan Plant Protection Study Program, Faculty of Agriculture, Sriwijaya University. Jalan Raya Palembang-Prabumulih km 32, Indralaya, Indonesia.
  • Fitri Ramadhani Department of Agronomy, Faculty of Agriculture, Sriwijaya University. Jalan Raya Palembang-Prabumulih km 32, Indralaya, Indonesia.

Article Metrics

This article Abstract has been read: 54 times
PDF Downloads: 28 times
Total Galley Downloads: 28 times
Total Views: 82 times




Bacillus thuringiensis , Bioinsecticide , Entomopathogenic , Plant growth , Daucus carota


Synthetic insecticides are still extensively used by farmers to control insect pests in carrots. The effects of excessive use of synthetic insecticides can damage agricultural ecosystems. This research aimed to examine Bacillus thuringiensis based bioinsecticide toward arthropods existence in vegetative growth phase of carrots The research was conducted in Pagar Alam City (700 m above sea level) and a relative humidity of 48–99%. The carrot plantations studied were planted in polyculture with mustard greens and sweet corn. This study used a completely randomized design (CRD) with 3 treatments and 9 replications. The treatments were bioinsecticide B. thuringiensis; synthetic insecticide (imidacloprid 200 g/l); and no-insecticide application (control). Agronomic observations were height of carrot and their number of leaves. Arthropods observations were carried out using sweep nets, pitfall traps, and direct visual observation. The results showed there was no significantly different on height of carrot plant and their number of leaves among three applications. Arthropods population in carrot plants treated with B. thuringiensis was lower than those in control carrot plants. In pitfall trap observations, the highest number of arthropod individuals obtained was belong to order Hymenoptera and had a moderate value of the Shannon-Wiener diversity index (H'). In addition, total insect population after application of B. thuringiensis observed using nets, tended to decrease from the second observation onwards. The category of insect diversity level trapped by Pitfall trap in B. thuringiensis bioinsecticide treatment was included in the medium category (H' = 1.75), while the treatment of imidacloprid (H' = 0.85) and control (H' = 0.81) was included in the low category.

Last Year PDF Downloads

Download data is not yet available.


Irjanyanti, A. D., Wibowo, A. S., Stiyaningsih, H., Putri, I. M., Gitaningtyas, O. P., Areka, S. K., Suprapti, W., & Nurfalah, Z. (2023). Statistik Hortikultura 2022. 27.

Bhat, D. M., And Kashmir, J., Fayaz, I., Ahangar, A., & Ahangar, F. A. (2018). A Systematic checklist and species richness of insect pests associated with vegetable crops in Jammu & Kashmir State (India). Journal of Entomology and Zoology Studies, 6(2), 328–338.

N. V. Raghunandan, & Manjunatha, R. (2023). A new report of a fly, Melanagromyza sp. (Diptera: Agromyzidae) on carrot (Daucus carota L.) from India. Pest Management in Horticultural Ecosystems, 29(1), 169–171.

Indiati, S. W., & Marwoto, M. (2017). Penerapan Pengendalian Hama Terpadu (PHT) pada Tanaman Kedelai. Buletin Palawija, 15(2), 87. https://doi.org/10.21082/bulpa.v15n2.2017.p87-100 DOI: https://doi.org/10.21082/bulpa.v15n2.2017.p87-100

Zago, H. B., Siqueira, H. A. A., Pereira, E. J. G., Picanço, M. C., & Barros, R. (2014). Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Management Science, 70(3), 488–495. https://doi.org/10.1002/ps.3600 DOI: https://doi.org/10.1002/ps.3600

Prabawati, G., Herlinda, S., & Pujiastuti, Y. (2019). The abundance of canopy arthropods in south sumatra (Indonesia) freshwater swamp main and ratooned rice applied with bioinsecticides and synthetic insecticide. Biodiversitas, 20(10), 2921–2930. https://doi.org/10.13057/biodiv/d201021 DOI: https://doi.org/10.13057/biodiv/d201021

Herlinda, S., Prabawati, G., Pujiastuti, Y., Susilawati, Karenina, T., Hasbi, & Irsan, C. (2020). Herbivore insects and predatory arthropods in freshwater swamp rice field in South Sumatra, Indonesia sprayed with bioinsecticides of entomopathogenic fungi and abamectin. Biodiversitas, 21(8), 3755–3768. https://doi.org/10.13057/biodiv/d210843 DOI: https://doi.org/10.13057/biodiv/d210843

Osman, G. E. H., Already, R., Assaeedi, A. S. A., Organji, S. R., El-Ghareeb, D., Abulreesh, H. H., & Althubiani, A. S. (2015). Bioinsecticide bacillus thuringiensis a comprehensive review. Egyptian Journal of Biological Pest Control, 25(1), 271–288.

Valtierra-De-luis, D., Villanueva, M., Berry, C., & Caballero, P. (2020). Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins, 12(12). https://doi.org/10.3390/toxins12120773 DOI: https://doi.org/10.3390/toxins12120773

Kim, E., Jeoung, S., Park, Y., Kim, K., & Kim, Y. (2015). A Novel Formulation of Bacillus thuringiensis for the Control of Brassica Leaf Beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 108(6), 2556–2565. https://doi.org/10.1093/jee/tov245 DOI: https://doi.org/10.1093/jee/tov245

Astuti, D. T., Damiri, N., Pujiastuti, Y., & Afriani, S. R. (2019). Pemanfaatan Limbah Organik dalam Pembuatan Bioinsektisda berbasis Bacillus thuringiensis sebagai Agens Pengendalian Hama Tanaman Caisim Brassica juncea. Jurnal Lahan Suboptimal, 7(2), 136–143. https://doi.org/10.33230/jlso.7.2.2018.350 DOI: https://doi.org/10.33230/JLSO.7.2.2018.350

Pujiastuti, Y., Sulistyani, D. P., & Suparman, S. (2021). Patogenisitas isolat bakteri entomopatogenik Bacillus thuringiensis diisolasi dari Spodoptera litura terhadap larva Plutella xylostella ( Lepidoptera : Plutellidae ). Prosiding Seminar Nasional Lahan Suboptimal Ke-9 Tahun 2021, 1, 621–627.

Güney, G., Cedden, D., Hänniger, S., Heckel, D. G., Coutu, C., Hegedus, D. D., Mutlu, D. A., Suludere, Z., Sezen, K., Güney, E., & Toprak, U. (2021). Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis sp. tenebrionis Cry3Aa toxin. Archives of Insect Biochemistry and Physiology, 108(2), 1–16. https://doi.org/10.1002/arch.21834 DOI: https://doi.org/10.1002/arch.21834

Sunariah, F., Herlinda, S., Irsan, C., & Windusari, Y. (2016). Kelimpahan dan Kekayaan Artropoda Predator pada Tanaman Padi yang Diaplikasi Bioinsektisida Bacillus thuringiensis. HPT Tropika, 16(1), 42–50. DOI: https://doi.org/10.23960/j.hptt.11642-50

Azizoglu, U. (2019). Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt. Current Microbiology, 76(11), 1379–1385. https://doi.org/10.1007/s00284-019-01705-9 DOI: https://doi.org/10.1007/s00284-019-01705-9

Bandopadhyay, S. (2020). Application of plant growth promoting Bacillus thuringiensis as biofertilizer on Abelmoschus esculentus plants under field condition. Journal of Pure and Applied Microbiology, 14(2), 1287–1294. https://doi.org/10.22207/JPAM.14.2.24 DOI: https://doi.org/10.22207/JPAM.14.2.24

Ahmad, M., Pataczek, L., Hilger, T. H., Zahir, Z. A., Hussain, A., Rasche, F., Schafleitner, R., & Solberg, S. (2018). Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology, 9 (DEC). https://doi.org/10.3389/fmicb.2018.02992 DOI: https://doi.org/10.3389/fmicb.2018.02992

Pujiastuti, Y., Gunawan, B., Sulistyani, D. P., Sandi, S., & Sasanti, A. D. (2021). Pemanfaatan Limbah Urin Sapi sebagai Bahan Dasar Pembuatan Bioinsektisida Berbasis Bacillus thuringiensis di Desa Sejaro Sakti Kecamatan Indralaya Kabupaten Ogan Ilir. Jurnal Puruhita, 3(1), 17–21. https://doi.org/10.15294/puruhita.v3i1.53051 DOI: https://doi.org/10.15294/puruhita.v3i1.53051

Borror, D.J., Triplehorn C.A., and Johnson, N.F. 2005. Study of Insects. 7th Edition. Thomson Brooks Cole. United States. 879 p.

Mazlan, Kartikawati, S. M & Burhanuddin. (2019). Keanekaragaman Jenis Semut (Formicidae) Arboreal di Hutan Mangrove Kelurahan Setapuk Besar Kota Singkawang. Jurnal Hutan Lestari, 7(3), 999–1006. https://doi.org/10.26418/jhl.v7i3.35531 DOI: https://doi.org/10.26418/jhl.v7i3.35531

Khan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of Plant Growth Promoters and Plant Growth Regulators on Rainfed Agriculture. In PLOS ONE (Vol. 15, Issue 4). https://doi.org/10.1371/journal.pone.0231426 DOI: https://doi.org/10.1371/journal.pone.0231426

Poveda, J., & González-Andrés, F. (2021). Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology, 105(23), 8629–8645. https://doi.org/10.1007/s00253-021-11492-8 DOI: https://doi.org/10.1007/s00253-021-11492-8

Armada, E., Probanza, A., Roldán, A., & Azcón, R. (2016). Native Plant Growth Promoting Bacteria Bacillus thuringiensis and Mixed or Individual Mycorrhizal Species Improved Drought Tolerance and Oxidative Metabolism in Lavandula Dentata Plants. Journal of Plant Physiology, 192, 1–12. https://doi.org/10.1016/j.jplph.2015.11.007 DOI: https://doi.org/10.1016/j.jplph.2015.11.007

Bhuimbar, M. V, & Dandge, P. B. (2023). Production of Organic Liquid Biofertilizer from Fish Waste and Study of its Plant Growth Promoting Effect. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93(1), 235–243. https://doi.org/10.1007/s40011-022-01413-8 DOI: https://doi.org/10.1007/s40011-022-01413-8

Swandi, M. K., Mubarik, N. R., & Tjahjoleksono, A. (2019). Rhizobacterial inoculants: The formulation as biofertilizer and its application on chili plants (Capsicum annum L.). Malaysian Journal of Microbiology, 15(1), 44–51. https://doi.org/10.21161/mjm.112517 DOI: https://doi.org/10.21161/mjm.112517

O’Rourke, M. E., & Petersen, M. J. (2017). Extending the ‘resource concentration hypothesis’ to the landscape-scale by considering dispersal mortality and fitness costs. Agriculture, Ecosystems & Environment, 249, 1–3. https://doi.org/https://doi.org/10.1016/j.agee.2017.07.022 DOI: https://doi.org/10.1016/j.agee.2017.07.022

Mala, M., Mollah, M. M. I., & Baishnab, M. (2020). Importance of intercropping for biodiversity conservation. Journal of Science Technology and Environment Informatics, 10(2), 709–716. https://doi.org/10.18801/jstei.100220.71 DOI: https://doi.org/10.18801/jstei.100220.71

Karenina, T., Herlinda, S., Irsan, C., & Pujiastuti, Y. (2019). Abundance and species diversity of predatory arthropods inhabiting rice of refuge habitats and synthetic insecticide application in freshwater swamps in South Sumatra, Indonesia. Biodiversitas, 20(8), 2375–2387. https://doi.org/10.13057/biodiv/d200836 DOI: https://doi.org/10.13057/biodiv/d200836

Das, I., Kumar, G., & Shah, N. G. (2013). Microwave heating as an alternative quarantine method for disinfestation of stored food grains. International Journal of Food Science, 2013. https://doi.org/10.1155/2013/926468 DOI: https://doi.org/10.1155/2013/926468

Chougule, N. P., Li, H., Liu, S., Linz, L. B., Narva, K. E., & Meade, T. (2013). Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. 110(21), 8465–8470. https://doi.org/10.1073/pnas.1222144110 DOI: https://doi.org/10.1073/pnas.1222144110

Schünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture . ISRN Microbiology, 2014, 1–12. https://doi.org/10.1155/2014/135675 DOI: https://doi.org/10.1155/2014/135675



How to Cite
Write scientific names with Italic fonts:

Dwisatria, N., Pujiastuti, Y., Irsan, C., & Ramadhani, F. (2024). EVALUATION OF Bacillus thuringiensis-BASED BIOINSECTICIDE ON THE PRESENCE OF ARTHROPODS IN VEGETATIVE PHASE OF CARROT. BIOVALENTIA: Biological Research Journal, 9(2), 137–147. https://doi.org/10.24233/biov.9.2.2023.414



Vol 9, No 2 (2023): Nov 2023

Most read articles by the same author(s)