ARTIFICIAL SHADE ADAPTATION AND POPULATION DENSITY ON SWISS CHARD (Beta vulgaris subsp. Cicla (L) W.D.J Koch) IN URBAN AR-EA
DOI:
https://doi.org/10.24233/biov.9.1.2023.384Keywords:
colorful , vegetable , subtropis , microclimate , urban areaAbstract
Swiss chard is a leafy vegetable that is high in nutrients, vitamins, minerals, protein, and antioxidants that are beneficial to human health. Swiss chard. Swiss chard is generally cultivated in the Mediterranean climate, grows well in full sunlight, air temperatures 14-21oC, and can still survive at temperatures close to light frost. The aim of this study to evaluate efficient plant densi-ties in urban limited land area and looking at the response of Swiss chard plant to reduc-ing the intensity of sunligt of 45%, 55% and 80%.in urban tropic area. This research was used 4 different artificial shading i.e 0% (control, shade 45%, shade 55% and shade 80%. Microclimate was measured per each shade for 14 days i.e., air temperatur, soil temperature, air humidity, and soil moisture using a data logger meter. Shade with intensity 80% is proven to reduce air temperate and soil temperature, but also inhibits the growth and development of Swiss chard plants. Population 1plant/pot gives the best growth and yield of Swiss chard per plant, 3 plants/pot increased total fresh weight per cultivation area, thereby maximize the use of limited urban land
Last Year PDF Downloads
References
I. Opitz., R. Berges., A. Piorr., and T. Krikser. 2016. Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agriculture and Human Values, 33(2), 341-358. https://doi.org/10.1007/s 10460- 015-9610-2
F. Orsini., R. Kahane., R. Nono-Womdim., and Gianquinto. G. 2013. Urban agriculture in the de-veloping world: a review. Agronomy for Sustaina-ble Development, 33(4), 695–720. doi: 10.1007/s13593-013-0143-z.
M. K. Rana., and P. Rani. 2017. Swiss Chard. In: M.K. Rana (editor). Vegetable Crops Science, pp. 241-246. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781315116204
H. Gustia. 2014. Pengaruhpenambahan Sekam Bakar Pada Media Tanam Terhadap Pertumbuhan Dan Produksi Tanaman Sawi (Brassica Juncea L.). E-Journal Widya Kesehatan dan Lingkungan, 1(1), 36807.
H. E. Pramitasari., T. Wardiyati., and M. Nawawi. 2016. Effect of nitrogen fertilizer dosage and plant density level on the growth and yield of kailan (Brassica oleraceae L.) (Doctoral disserta-tion, Brawijaya University).
A. Mahmood., Y. Hu., J. Tanny., and E. A. Asan-te. 2018. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Scientia Horticulturae, 241: 241–251. doi: 10.1016/j.scienta. 2018.06.078.
B. Lakitan., K. Kartika., S. Susilawati., and A. Wi-jaya. 2021. Acclimating leaf celery plant (Apium graveolens) via bottom wet culture for increasing its adaptability to tropical riparian wetland ecosys-tem. Biodiversitas, 22(1), 320–328. doi: 10.13057/biodiv/d220139.
R. Song., D. Kelman., K. L. Johns., and A. D. Wright. 2012. Correlation between leaf age, shade levels, and characteristic beneficial natural con-stituents of tea (Camellia sinensis) grown in Ha-waii. Food Chem. 133, 707–714.
D. Zhao., Z. Hao., and J. Ta. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Bioch. 61, 187–196.
G. Xu., X. Liu, Q. Wang., R. Xiong, and Y. Hang. 2017. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields. Environ. Sci. Pol-lut. Res. 24, 6581–6591. http://dx.doi.org/10.1007/s11356-017-8397-7.
A. Hursh., A. Ballantyne., L. Cooper., M. Ma-neta., J. Kimball., and J. Watts. (2017). The sensi-tivity of soil respiration to soil temperature, mois-ture, and carbon supply at the global scale. Global Change Biology, 23(5), 2090-2103.
M. Pirkner., U. Dicken., J. Tanny. 2014. Pen-man-Monteith approaches for estimating crop evapotranspiration in screenhouses–a case study with table-grape. Int. J. Biometeorol. 58 (5), 725–737.
L. Deng., K. Wang., J. Li., G. Zhao., and Z. Shangguan. 2016. Effect of soil moisture and at-mospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, China. Ecol. Eng. 94, 525-531. doi: 10.1016/j.ecoleng.2016.06.048.
F. E. Broadbent. 2015. Soil organic matter. Sustainable options in land management, 2: 34-38.
B. Onwuka., and B. Mang. 2018. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res, 8(1), 34-37.
E. I. Bonadeo., M. Moreno., R. Bongiovanni., Marzari., and M. J. Ganum Gorriz. 2017. El siste-ma suelo-planta. Principios generales. Editora UniRío, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina.
G. Fischer., J. A. Cleves-Leguizamo., and H. E. Balaguera-López. 2022. Impact of soil tempera-ture on fruit species within climate change scenar-ios. Revista Colombiana de Ciencias Hortícolas, 16(1).
de Wit, M., Lorrain, S., and Fankhauser, C. 2014. Auxin‐mediated plant architectural changes in response to shade and high tempera-ture. Physiologia plantarum, 151(1), 13-24
Scarpella, E., Barkoulas, M. and Tsiantis, M. 2010. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a00151.
Y. Wu., W. Gong., and W. Yang. 2017. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific reports, 7(1), 9259.
L. N. Fadilah., B. Lakitan., and M. Marlina. 2022. Effects of shading on the growth of the purple pakchoy (Brassica rapa var. Chinensis) in the urban ecosystem. Agronomy Research. 20(S1), 938–950, 2022 https://doi.org/10.15159/AR.22.057.
X. Hao., J. Jia., J. Mi., S. Yang., A. M. Khattak., L. Zheng., W. Gao., and M. Wang. 2020. An optimization model of light intensity and nitro-gen concentration coupled with yield and quality. Plant Growth Regulation. 92, 319–331. doi: 0.1007/s10725-020-00641-0.
F. Hutagalung., P. B., Timotiwu., Y. C. Gint-ing., and T. K. B. Manik. 2021. Effect of reducing intensity of solar radiation on the growth and qual-ity rimaine lettuce (Lactuca sativa var. longifolia). Journal Agrotek Tropika, 9(3): 453-461. doi: 10.23960/jat.v9i3.5311.
Y. Xia., M. R. Sahib., A. Amna., S. O. Opiyo., Z. Zhao and Y. G. Gao. 2019. Culturable endo-phytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Scientific reports, 9(1), p.1669.
L. Libutti., A. Angela, and A. R. Rivelli. 2021. Quanti-Qualitative Response of Swiss Chard (Beta Vulgaris l. Var. Cycla) to Soil Amendment with Biochar-Compost Mixtures. Agronomy, 11(2), 1–18. doi: 10.3390/agronomy11020307.
C. G. Abdel., H. R. Abdelreda., and M. A. Abdulrazak. 2019. Growth responses of home-grown Barley (Hordeum vulgare), Lettuce (Lactu-ca sativa), Swiss chards (Beta vulgaris) and faba beans (Vicia faba) to sunlight and shade. Jornal of Al-Muthanna for Agricultural Sciences, 7(1).
S. Kalve., J. Fotschki., T. Beeckman., K. Vis-senber.,. and G. T. S. Beemster. 2014. Tree-dimensional patterns of cell division and expan-sion throughout the development of arabidopsis thaliana leaves. J. Exp. Bot. 65, 6385–6397.
Y. Wang., Z. Zhang., Y. Liang, Y. Han., and J. Tan. 2020. High potassium application rate in-creased grain yield of shading-stressed winter wheat by improving photosynthesis and photosyn-thate translocation. Frontiers in Plant Science, 11, 134.
J. Gao., B. Zhao., S. Dong., P. Liu., B. Ren., and J. Zhang. 2017. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable iso-tope tracer in the field. Frontiers in Plant Science, 8, 1821.
J. Gao, Z. Liu., B. Zhao., P. Liu., and J. W. Zhang. 2020. Physiological and comparative pro-teomic analysis provides new insights into the ef-fects of shade stress in maize (Zea mays L.). BMC plant biology, 20(1), 1-13.
D. F. Nurshanti., B. Lakitan., M. Hasmeda., and F. Ferlinahayati. 2023. Shoot emergence, leaf expansion, and corm growth in konjac plant (Amorphophallus Muelleri Blume) treated with hydropriming and shading. AGRIVITA, Journal of Agricultural Science, 45(1), 66-77.
G. Hailay and Awgchew Haymanot. 2019. The response of Swiss chard (Beta vulgaris L.) to ni-trogen levels and intra-row spacing in Debre Ber-han Central Ethiopia. 2(2), 105–116. https://doi.org/10.22077/ jhpr.2019.2099.1041
A. Arrusy. 2021. Effect of watering frequency and NASA POC on lettuce (Latuca Sativa L.) with banana stem media (Doctoral dissertation, Univer-sitas Islam Riau).
U. Utari. 2021. Effect of planting spacing and application of sawdust and cow dung on the growth and production of green eggplant (Sola-num melongena L.). (Doctoral dissertation, Uni-versitas Cokroaminoto Palopo.
M. R. Hasan., A. K. M. M.., M. N. Islam., M. A. Ali., and J. Uddain. 2017. Growth and Yield of Lettuce (Lactuca Sativa L.) Influenced as Nitrogen Growth and Yield of Lettuce (Lactuca Sativa L.) Influenced as Nitrogen Fertilizer and Plant Spac-ing. June. https://doi.org/10.9790/2380-1006016271.
B. Gashaw., and H. Sheway. 2020. Effect of Different Rates of N and Intrarow Spacing on Growth Performance of Lettuce (Lactuca sativa L) in Gurage Zone, Wolkite University, Ethiopia.
S. Susilawati., W. Wijaya., and H. Harwan. 2019. Effect of nitrogen fertilizer dosage and spacing on growth and yield of lettuce (Lactuca sativa L.). Agrijati Jurnal Ilmiah Ilmu-Ilmu Per-tanian. 31(3), 82-92.
T. F. D. G. Diriba., G. Defa., G. Gudeta., G. Iticha., A. Chimdessa., A. Abdisa. 2017. Effect of Plant Spacing and Urea Fertilizer on Yield and Yield Components of Beetroot (Beta vulgaris L.). Agricultural Development. 2(1), 13– 21. https://doi.org/10.20448 /journal.523.2017.21.13.2.
B. Lakitan., and K. Kartika. 2020. Population density, multiple harvesting, and ability of Ipo-moea reptans to compete with native weeds at tropical wetlands. Biodiversitas Journal of Biolog-ical Diversity, 21(9).
K. Pawandeep., S. K. Singh., and M. K. Sidhu. 2020. Response of different levels of nitrogen and sp a cing spa on yield and qu ality of c a uliflower grown under quality ca central region of punjab. 15, 123–128.
R. Dantri., T. Irmansyah., and J. Ginting. 2015. Response of Biological Fertilizers to Several Plant-ing Spacings of Kailan Growth and Production (Brassica oleraceae var. acephala). Jurnal Agroekoteknologi. 3(2), 483-488.
PDF Downloads: 184
Published
How to Cite
Write scientific names with Italic fonts:
Issue
Section
Copyright (c) 2023 Rofiqoh Ria, Benyamin Lakitan, Firdaus Sulaiman, Yakup Yakup, Zaidan P Negara, Susilawati Susilawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d. Authors hold the copyright and retain publishing right of articles without restrictions.