• Fitra Fadhilah Rizar Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Benyamin Lakitan Research Center for Sub-optimal Lands, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia.
  • Andi Wijaya Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia

Article Metrics

This article Abstract has been read: 35 times
PDF Downloads: 29 times
Total Galley Downloads: 29 times
Total Views: 64 times



Vigna unguiculata , climbing vegetable , commercial cultivar , pot size , inhibited root growth


Yard-long bean, a favored vegetable known for its taste and nutritional value, holds economic importance. Its climbing nature and environmental resilience make it ideal for urban cultivation in pots and climbing frames. This study, conducted in a limited urban space, aimed to determine optimal pot size and cultivars for yard-long bean cultivation, emphasizing growth and yield. Two pot sizes were used: a larger one (30 cm diameter x 37 cm height, M1) and a smaller one (30 cm diameter x 30 cm height, M2), alongside three commercial cultivars: Kanton Tavi (V1), Camellia (V2), and Arafi (V3). Results indicated that a larger pot size increased pod number and total pod weight per plant, facilitating root development, vine growth, and enhanced yield. The larger substrate volume retained moisture and boosted plant biomass. Cultivar treatment affected branch length and flowering time, with Camellia exhibiting the longest harvest period (14 harvests). Hence, for Camellia varieties, cultivation using larger pots (30 cm diameter x 37 cm height) is recommended.

Last Year PDF Downloads

Download data is not yet available.


Suma, A., Latha, M., John, J. K., Aswathi, P. V., Pandey, C. D., and Ajinkya, A. 2021. Yard-long bean. In The Beans and the Peas (pp. 153-172). Woodhead Publishing. doi:10.1016/B978-0-12-821450-3.00010-X DOI:

Watcharatpong, P., Kaga, A., Chen, X., and Somta, P. 2020. Narrowing down a major QTL region conferring pod fiber contents in yard-long bean (Vigna unguiculata), a vegetable cowpea. Genes, 11(4), 363. doi:10.3390/genes11040363 DOI:

Quamruzzaman, A. K. M., Islam, F., Akter, L., Khatun, A., Mallick, S. R., Gaber, A., Laing, A., Brestic, M., and Hossain, A. 2022. Evalua-tion of the quality of yard-long bean (Vigna unguiculata sub sp. sesquipedalis L.) cultivars to meet the nutritional security of increasing population. Agronomy, 12(9), 2195. doi:10.3390/agronomy12092195 DOI:

Khatun, A., Quamruzzaman, A. K. M., Islam, F., Akter, L., and Khanom, A. A. 2022. Nutri-tional properties of yard long bean cultivars in Bangladesh. European Journal of Agriculture and Food Sciences, 4:98-102. DOI:

Pidigam, S., Thuraga, V., Pandravada, S. R., Natarajan, S., Adimulam, S., Amarapalli, G., Nimmarajula, S., and Venkateswaran, K. 2021. Genetic Improvement of Yard-long Bean (Vigna unguiculata (L.) Walp. ssp. sesquipeda-lis (L.) Verdc.). In: Advances in Plant Breeding Strategies: Vegetable Crops: Volume 10: Leaves, Flowerheads, Green Pods, Mushrooms and Truffles, 379-420. doi:10.1007/978-3-030-66969-0_10 DOI:

Ng, A. K., and Mahkeswaran, R. 2021. Emerg-ing and disruptive technologies for urban farm-ing: A review and assessment. In Journal of physics: Conference series, 2003 (1): 1 . IOP Publishing. doi:10.1088/1742-6596/2003/1/012008 DOI:

Xi, L., Zhang, M., Zhang, L., Lew, T. T., and Lam, Y. M. 2022. Novel materials for urban farming. Advanced Materials, 34(25), 2105009. doi:10.1002/adma.202105009 DOI:

Andini, M., Dewi, O. C., and Marwati, A. 2021. Urban Farming During the Pandemic and Its Effect on Everyday Life. International Journal of Built Environment and Scientific Re-search, 5(1), 51-62. doi:10.24853/ijbesr.5.1.51-62 DOI:

Semchenko, M., Hutchings, M. J., and John, E. A. 2007. Challenging the tragedy of the com-mons in root competition: confounding effects of neighbour presence and substrate vol-ume. Journal of Ecology, 95(2), 252-260. doi:10.1111/j.1365-2745.2007.01210.x DOI:

Dambreville, A., Griolet, M., Rolland, G., Dau-zat, M., Bédiée, A., Balsera, C., Muller, B., Vile, D., and Granier, C. 2016. Phenotyping oilseed rape growth-related traits and their re-sponses to water deficit: the disturbing pot size effect. Functional Plant Biology, 44(1), 35-45. doi:10.1071/FP16036 DOI:

Megersa, H. G., Lemma, D. T., and Banjawu, D. T. 2018. Effects of plant growth retardants and pot sizes on the height of potting ornamen-tal plants: A short review. J. Hortic, 5(1), 1000220. doi:10.4172/2376-0354.1000220 DOI:

Obede da Silva Aragão, O., de Almeida Leite, R., Araújo, A. P., and da Conceição Jesus, E. 2020. Effect of pot size on the growth of com-mon bean in experiments with Rhizobi-um. Journal of Soil Science and Plant Nutri-tion, 20, 865-871. doi:10.1007/s42729-020-00172-7 DOI:

Indonesian Meteorological, Climatological, and Geophysical Agency. 2023. Palembang daily climate data. Available at:

Khatoon, R., Hossain, M. M., Rahim, M. A., Rahman, M. H., and Akter, L. 2022. Genotypic differences in plant growth responses and ion accumulations to salt stress conditions of sweet gourd (Cucurbita moschata). Journal of Ap-plied and Natural Science, 14(2), 373-384. DOI:

Dlamini, P. A., Masarirambi, M. T., Wahome, P. K., and Dzimba, M. A. 2019. The Effects of Different Tillage Systems and Cultivars on Growth, Yield and Quality of Zucchini (Cucur-bita pepo L.) in a Semi-Arid Sub-Tropical En-vironment. Journal of Plant Studies, 8(2). doi:10.5539/jps.v8n2p49 DOI:

Ezin, V., Gbemenou, U. H., and Ahanchede, A. 2022. Characterization of cultivated pumpkin (Cucurbita moschata Duchesne) landraces for genotypic variance, heritability and agro-morphological traits. Saudi journal of biologi-cal sciences, 29(5), 3661-3674. doi:10.1016/j.sjbs.2022.02.057 DOI:

Merwad, A. R. M., Desoky, E. S. M., and Rady, M. M. 2018. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar applica-tion. Scientia Horticulturae, 228, 132-144. doi:10.1016/j.scienta.2017.10.008 DOI:

Zhang, F., Zhang, J., Ma, Z., Xia, L., Wang, X., Zhang, L., Ding, Y., Qi, J., Mu, X., Zhao, F., Ji, T and Tang, B. 2021. Bulk analysis by rese-quencing and RNA‐seq identifies candidate genes for maintaining leaf water content under water deficit in maize. Physiologia Planta-rum, 173(4), 1935-1945. doi:10.1111/ppl.13537 DOI:

Hayatu, M., Muhammad, S. Y., and Abdu, H. U. 2014. Effect of water stress on the leaf rela-tive water content and yield of some cowpea (Vigna unguiculata (L) Walp.) geno-type. International Journal of Scientific & Technology Research 3 (7).

Altaf, A., Gull, S., Zhu, X., Zhu, M., Rasool, G., Ibrahim, M. E. H., Aleem, M., Uddin, S., Saeed, A., Shah, A. Z., Zada., Quan, M., Yong-gang, D., Xu, D., and Chen, L. 2021. Study of the effect of peg-6000 imposed drought stress on wheat (Triticum aestivum L.) cultivars using relative water content (RWC) and proline con-tent analysis. Pakistan Journal of Agricultural Sciences, 58(1). doi:10.21162/PAKJAS/21.953

Zhang, C., Zhang, J., Zhang, H., Zhao, J., Wu, Q., Zhao, Z., and Cai, T. 2015. Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Plant growth regulation, 77, 233-243. doi:10.1007/s10725-015-0056-8 DOI:

Wellstein, C., Poschlod, P., Gohlke, A., Chelli, S., Campetella, G., Rosbakh, S., Canullo, R., Kreyling, J., Jentsch, A., and Beierkuhnlein, C. 2017. Effects of extreme drought on specific leaf area of grassland species: A meta‐analysis of experimental studies in temperate and sub‐Mediterranean systems. Global Change Biolo-gy, 23(6), 2473-2481. doi:10.1111/gcb.13662 DOI:

Feng, Y. L., Fu, G. L., and Zheng, Y. L. 2008. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between inva-sive and noninvasive alien conge-ners. Planta, 228, 383-390. doi:10.1007/s00425-008-0732-2 DOI:

Berretta, C., Poë, S., and Stovin, V. 2014. Moisture content behaviour in extensive green roofs during dry periods: The influence of veg-etation and substrate characteristics. Journal of Hydrology, 511, 374-386. doi:10.1016/j.jhydrol.2014.01.036 DOI:

ten Hoopen, G. M., Deberdt, P., Mbenoun, M., and Cilas, C. 2012. Modelling cacao pod growth: implications for disease con-trol. Annals of Applied Biology, 160(3), 260-272. doi:10.1111/j.1744-7348.2012.00539.x DOI:

Das, S. S., and Fakir, M. S. A. 2014. Pod growth and seed composition in two genotypes of Lablab purpureus. Legume Research-An In-ternational Journal, 37(3), 306-310. DOI:

Lv, Z., Zhou, D., Shi, X., Ren, J., Zhang, H., Zhong, C., Kang, S., Zhao, X., Yu, H., and Wang, C. 2023. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rap-id-growth stage by phytohormones. BMC Plant Biology, 23(1), 1-14. doi:10.1186/s12870-023-04382-w DOI:

Shrestha, R., Turner, N. C., Siddique, K. H. M., Turner, D. W., and Speijers, J. 2006. A water deficit during pod development in lentils re-duces flower and pod numbers but not seed size. Australian Journal of Agricultural Re-search, 57(4), 427-438. doi:10.1071/AR05225 DOI:

Gustiar, F., Lakitan, B., Budianta, D., and Negara, Z. P. 2023. Assessing the impact on growth and yield in different varieties of chili pepper (Capsicum frutescens) intercropped with chaya (Cnidoscolus aconitifoli-us). Biodiversitas Journal of Biological Diver-sity, 24(5). doi:10.13057/biodiv/d240516 DOI:

Kanai, S., Moghaieb, R. E., El-Shemy, H. A., Panigrahi, R., Mohapatra, P. K., Ito, J., Ngu-yen, N. T., Saneoka, H., and Fujita, K. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant science, 180(2), 368-374. doi:10.1016/j.plantsci.2010.10.011 DOI:

Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., and Postma, J. A. 2012. Pot size matters: a meta-analysis of the effects of root-ing volume on plant growth. Functional Plant Biology, 39(11), 839-850. doi:10.1071/FP12049 DOI:

Ligarreto–Moreno, G., and Pimentel–Ladino, C. 2022. Grain yield and genotype x environ-ment interaction in bean cultivars with differ-ent growth habits. Plant Production Sci-ence, 25(2), 232-241. doi:10.1080/1343943X.2021.1981141 DOI:

Agudamu, Yoshihira, T., and Shiraiwa, T. 2016. Branch development responses to plant-ing density and yield stability in soybean culti-vars. Plant Production Science, 19(3), 331-339. doi:10.1080/1343943X.2016.1157443 DOI:

Liu, W., Kim, M. Y., Van, K., Lee, Y. H., Li, H., Liu, X., and Lee, S. H. 2011. QTL identifi-cation of yield-related traits and their associa-tion with flowering and maturity in soy-bean. Journal of Crop Science and Biotechnol-ogy, 14, 65-70. doi:10.1007/s12892-010-0115-7 DOI:

Fang, X., Li, Y., Nie, J., Wang, C., Huang, K., Zhang, Y., Zhang, Y., She, H., Liu, X., Ruan, R., Yuan, X., and Yi, Z. 2018. Effects of nitro-gen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fag-opyrum esculentum M.). Field Crops Re-search, 219, 160-168. doi:10.1016/j.fcr.2018.02.001 DOI:

Guo, Y., Ren, G., Zhang, K., Li, Z., Miao, Y., and Guo, H. 2021. Leaf senescence: Progres-sion, regulation, and application. Molecular Horticulture, 1(1), 1-25. doi:10.1186/s43897-021-00006-9 DOI:

Zentgraf, U., Andrade-Galan, A. G., and Biek-er, S. 2022. Specificity of H2O2 signaling in leaf senescence: is the ratio of H2O2 contents in different cellular compartments sensed in Arabidopsis plants?. Cellular & Molecular Bi-ology Letters, 27(1), 1-19. doi:10.1186/s11658-021-00300-w DOI:

Woo, H. R., Masclaux-Daubresse, C., and Lim, P. O. 2018. Plant senescence: how plants know when and how to die. Journal of Experimental Botany, 69(4), 715-718. doi:10.1093/jxb/ery011 DOI:

Amare, G., and Gebremedhin, H. 2020. Effect of plant spacing on yield and yield components of tomato (Solanum lycopersicum L.) in Shewa-robit, Central Ethiopia. Scientifica, 2020. doi:10.1155/2020/8357237 DOI:

Chernet, S., and Zibelo, H. 2019. Evaluation of hot pepper (Capsicum annuum L.) varieties for green pod yield and yield components in West-ern Tigray, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 11(9), 260-264. doi:10.5897/JPBCS2019.0812 DOI:

Murphy, G. P., File, A. L., and Dudley, S. A. 2013. Differentiating the effects of pot size and nutrient availability on plant biomass and allo-cation. Botany, 91(11), 799-803. doi:10.1139/cjb-2013-0084 DOI:

Yang, Z., Hammer, G., van Oosterom, E., Ro-chais, D., and Deifel, K. 2010. Effects of pot size on growth of maize and sorghum plants. Proceedings of the 1st Australian Summer Grains Conference, Gold Coast, Australia, 21st – 24th June 2010.

Zhang, X. X., Whalley, P. A., Ashton, R. W., Evans, J., Hawkesford, M. J., Griffiths, S., Huang, Z. D., Zhou, H., Mooney, S. J., and Whalley, W. R. 2020. A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties. Plant and Soil, 451, 345-356. doi:10.1007/s11104-020-04530-3 DOI:



How to Cite
Write scientific names with Italic fonts:




Vol 9, No 2 (2023): Nov 2023