Growth Evaluation of Selfcrossed Progenies BC1F2 Experiencing Submerged and Non-submerged at BC1F1 and its Parents

Authors

  • Azzah Maulidya Department of Crop Science, Faculty of Agriculture, Universitas Sriwijaya, Jl. Padang Selasa No.524, Bukit Besar, Palembang 30139, South Sumatera, Indonesia.
  • Rujito Agus Suwignyo Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih, Km 32, Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia.
  • Susilawati Department of Agroecotechnology, Faculty of Agricuture, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih, Km.32, Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia.
  • Muhardiyanto Cahya Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih, Km 32, Indralaya, Ogan Ilir 30662, South Sumatera, Indonesia.

Article Metrics

This article Abstract has been read: 120 times
PDF Downloads: 75 times
Total Galley Downloads: 75 times
Total Views: 195 times

DOI:

https://doi.org/10.24233/biov.10.1.2024.432

Keywords:

Dual tolerance , Inpago 5 , Inpara 8

Abstract

Abstract: A non-tidal swamp can increase rice cultivation and production, but its use is still dependent on natural conditions, making plants vulnerable to submergence and drought stress. Developing dual-tolerant varieties is essential for rice cultivation in non-tidal swamps. Inpara 8 carries the SUB1 gene, providing tolerance to submergence stress, while Inpago 5 is tolerant to drought stress. This study aimed to evaluate the growth of BC1F2 progeny from a cross between Inpara 8 and Inpago 5 under submerged stress, along with their parents (Inpago 5 and Inpara 8). The research was conducted in the greenhouse of the Agriculture Faculty at Sriwijaya University at coordinates 3°13'11.1"S 104°38'49.4"E from July 2021 to January 2022. Inpago 5 exhibited the highest average plant height (145.81 cm), the most tillers (4.73), the most productive tillers (3.87), the highest total grain per clump (720.87 grains), the heaviest clump grain weight (15.86 g), and the lowest percentage of empty grains (33.47%). The donor parent Inpara 8 had the highest average total grain per panicle (192.08) and the highest dry weight (20.69 g). BC1F2 Submerged progeny showed the highest average 1000-grain weight (25.26 g) and the fastest harvest age (114.50 DAP). The BC1F2 self-cross progeny subjected to submergence stress displayed characteristics similar to its parents, with no significant differences in observed parameters.

Last Year PDF Downloads

Download data is not yet available.

References

Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara),” Badan Pus. Stat., vol. 2023, no. 68, pp. 1–8, 2023, [Online]. Available: https://www.bps.go.id/pressrelease/2023/10/16/2037/luas-panen-dan-produksi-padi-di-indonesia-2023--angka-sementara-.html#:~:text=Produksi beras pada 2023 untuk,sebesar 31%2C54 juta ton.

B. Suprihatno et al., Deskripsi varietas padi. 2009.

N. Suharta, “Karakteristik Dan Permasalahan Tanah Marginal Dari Batuan Sedimen Masam Di Kalimantan,” J. Penelit. dan Pengemb. Pertan., vol. 29, no. 4, pp. 139–146, 2017, doi: 10.21082/jp3.v29n4.2010.p139-146.

Irmawati, H. E. Hara, R. A. S. Uwignyo, and J. S. Akagami, “Swamp Rice Cultivation in South Sumatra, Indonesia:,” Trop. Agric. Dev., vol. 59, no. 1, pp. 35–39, 2015, doi: 10.11248/jsta.59.35.

D. Nursyamsi et al., Pedoman Umum PENGELOLAAN LAHAN RAWA LEBAK UNTUK PERTANIAN BERKELANJUTAN. Yogyakarta: Gadjah Mada University Press, 2014.

L. Fatah et al., Budidaya Padi di Lahan Rawa Lebak, no. January. Yogyakarta: Gadjah Mada University Press, 2017.

P. Biswajit, K. Sritama, S. Anindya, S. Moushree, and K. Sabyasachi, “Breeding for submergence tolerance in rice (Oryza sativa L.) and its management for flash flood in rainfed low land area: A review,” Agric. Rev., vol. 38, no. 02, pp. 167–179, 2017, doi: 10.18805/ag.v38i02.7938.

R. A. Suwignyo, “Efforts and strategy to improve the productivity of suboptimal land in Indonesia,” 2016.

S. Dixit, A. Singh, N. Sandhu, A. Bhandari, P. Vikram, and A. Kumar, “Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects,” Mol. Breed., vol. 37, no. 12, 2017, doi: 10.1007/s11032-017-0737-2.

A. Tiwari, S. Prasad, A. Kumar, A. Kumar, A. Mishara, and Singh K. N, “Physio-molecular Approach Towards Developing Rice Variety for Dual Resistance (Drought and Submergence) Under Rainfed Lowland Ecosystem,” J. Pharmacogn. Phytochem., vol. SP1, pp. 6–12, 2017.

A. N. . Rubaiyath and J. Zhang, “Flood and Drought Tolerance in Rice: Opposite but May Coexist,” Food Energy Secur., vol. 5, no. 2, pp. 76–88, 2016.

P. Shantiawan and P. Suwardike, “Adaptasi Padi Sawah (Oryza Sativa L.) terhadap Peningkatan Kelebihan Air sebagai Dampak Pemanasan Global,” Agro Bali Agric. J., vol. 2, no. 2, pp. 130–144, 2020, doi: 10.37637/ab.v2i2.415.

K. Xu and D. J. Mackill, “A Major Locus for Submergence Tolerance Mapped on Rice Chromosome 9,” Mol. Breed., vol. 2, pp. 219–224, 1996.

T. Fukao, E. Yeung, and J. Bailey-Serres, “The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice,” Plant Cell, vol. 23, no. 1, pp. 412–427, 2011, doi: 10.1105/tpc.110.080325.

A. Hairmansis, Supartopo, B. Kustianto, and H. Pane, “Karakter Agronomi dan Hasil Galur Padi Toleran Rendaman,” Penelit. Pertan. Pangan, vol. 30, no. 1, pp. 1–8, 2011.

B. Suprihatno and W. R. Coffman, “Inheritance of submergence tolerance in rice (Oryza sativa L.),” SABRAO J., vol. 13, pp. 98–108, 1981.

R. A. Suwignyo, Irmawati, F. Hose, and S. L. Aulia, “Development of Rice Varieties Adaptive to Nontidal Swampland using MABC: Growth Characteristics of Parent Plant and F1 Result.,” 2020.

N. Amiros, R. A. Suwignyo, M. Hasmeda, F. Adriansyah, E. S. Halimi, and E. Sodikin, “Development of adaptive rice variety to non-tidal swamp: Growth evaluation of backcrossed progenies (BC1F1) and its parents, Inpago 5 and Inpara 8,” Kultivasi, vol. 21, no. 3, pp. 270–278, 2022, doi: 10.24198/kultivasi.v21i3.41072.

D. Panda and J. Barik, “Flooding Tolerance in Rice: Focus on Mechanisms and Approaches,” Rice Sci., vol. 28, no. 1, pp. 43–57, 2021, doi: 10.1016/j.rsci.2020.11.006.

IRRI, “STANDARD EVALUATION SYSTEM FOR RICE,” pp. 7823–7830, 2002.

V. R. Babu, K. Shreya, K. S. Dangi, G. Usharani, and A. S. Shankar, “Correlation and Path Analysis Studies in Popular Rice Hybrids of India,” vol. 2, no. 3, pp. 1–5, 2012.

Q. U. Zaman, S. Javaid, S. Nazir, and S. Sharif, “Rice Plant Growth and Development,” Rice Prod. Knowl. Pract. Ensuring Food Secur., pp. 13–22, 2020, doi: 10.1007/978-1-4899-3754-4_2.

H. Yetti and Ardian, “Pengaruh Penggunaan Jarak Tanam Terhadap Pertumbuhan dan Produksi Padi Sawah (Oryza sativa L.) Varietas IR 42 dengan Metode SRI,” Agricurtural Science and Technology Journal, vol. 9, no. 1. pp. 21–27, 2010, [Online]. Available: https://garuda.kemdikbud.go.id/documents/detail/2632144.

Y. Liu, Y. Ding, Q. Wang, D. Meng, and S. Wang, “Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen,” Crop Sci., vol. 51, no. 2, pp. 786–792, 2011, doi: 10.2135/cropsci2010.04.0217.

R. Ofdiansyah, P. Sumarna, T. Tohidin, Y. Mahmud, and F. Dwimartina, “PERFORMA AGRONOMI BEBERAPA GALUR HARAPAN TANAMAN PADI (Oryza sativa L.) PADA LAHAN SAWAH TADAH HUJAN DI DESA KENDAYAKAN KECAMATAN TERISI,” Agro Wiralodra, vol. 6, no. 2, pp. 40–45, 2023, doi: 10.31943/agrowiralodra.v6i2.99.

B. C. Miller, J. E. Hill, and S. R. Roberts, “(1991) Plant Population Effects on Growth and Yield in Water-Seeded Rice (AJ),” vol. 297, pp. 291–297, 1991.

F. WANG, F. CHENG, and G. ZHANG, “Difference in Grain Yield and Quality among Tillers in Rice Genotypes Differing in Tillering Capacity,” Rice Sci., vol. 14, no. 2, pp. 135–140, 2007, doi: 10.1016/s1672-6308(07)60019-5.

G. Zhu, S. Peng, J. Huang, K. Cui, L. Nie, and F. Wang, “Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River,” Sci. Rep., vol. 6, no. February, pp. 1–12, 2016, doi: 10.1038/srep21049.

X. Li, Y. Zhou, P. Shuai, X. Wang, S. Peng, and F. Wang, “Source–Sink Balance Optimization Depends on Soil Nitrogen Condition So as to Increase Rice Yield and N Use Efficiency,” Agronomy, vol. 13, no. 3, pp. 1–18, 2023, doi: 10.3390/agronomy13030907.

E. Mungara, D. Indradewa, and R. Rogomulyo, “ANALISIS PERTUMBUHAN DAN HASIL PADI SAWAH (Oryza sativa L.) PADA SISTEM PERTANIAN KONVENSIONAL, TRANSISI ORGANIK, DAN ORGANIK,” vol. 2, no. 3, pp. 1–12, 2013.

Published

28-05-2024

How to Cite
Write scientific names with Italic fonts:

Maulidya, A., Agus Suwignyo, R., Susilawati, & Muhardiyanto, C. (2024). Growth Evaluation of Selfcrossed Progenies BC1F2 Experiencing Submerged and Non-submerged at BC1F1 and its Parents. BIOVALENTIA: Biological Research Journal, 10(1), 34–43. https://doi.org/10.24233/biov.10.1.2024.432

Issue

Section

Vol 10, No 1 (2024): May 2024

Similar Articles

You may also start an advanced similarity search for this article.