Telaah: Pengaruh Boswellic Acid pada performa Hippocampus di otak
DOI:
https://doi.org/10.24233/sribios.4.1.2023.387Kata Kunci:
boswellic acid , β-boswellic , hippocampus , frankincense gumAbstrak
Getah kemenyan dengan genus Boswellia telah lama digunakan secara tradisional pada beberapa penyakit. Kandungan Boswellia salah satunya adalah asam boswellic. Asam boswellic memiliki aktivitas neuroprotektif dan antiinflamasi. Beberapa jenis asam boswellic yang paling banyak diteliti mengenai efek farmakologi adalah asam 11-keto-β-boswelik (KBA), asam asetil-11-keto-β-boswellik (AKBA), dan β-boswelik (βBA). βBA diteliti memiliki efektivitas permeabel terhadap Blood Brain Barrier (BBB) dibandingkan jenis asam boswellic lainnya. Oleh karena itu, βBA memiliki potensi yang lebih besar dalam pengaruhnya pada otak terutama hippocampus. Review ini bertujuan untuk memberikan informasi lengkap dan membahas mengenai pengaruh boswellic acid pada performa hippocampus di otak terutama efek pada fungsi kognitif, efek farmakologis pada studi in vivo dan invitro, serta mekanisme molekuler sehingga diharapkan dapat menjadi pengetahuan sebagai acuan dalam melakukan penelitian lanjutan. Pemberian asam boswellic memberikan efek neuroprotektif dan antiinflamasi pada hippocampus sehingga dapat bekerja menghambat apoptosis sel di hippocampus, meningkatkan viabilitas sel saraf, dan meningkatkan kemampuan learning dan memori serta kognitif melalui anti-infalamasi. Beberapa mekanisme molekuler asam boswellic yang dapat mempengaruhi performa hippocampus adalah 5-Lipoxygenase (5-LOX), peningkatan Nuclear factor erythroid 2–related factor 2 (Nrf2), penekanan aktifitas acetylcholinesterase (AChE), dan pengaturan Ca (2+/-) dan protein kinase teraktivasi mitogen (MAPK). Akan tetapi, penelitian mengenai pengaruh boswellic acid pada performa hippocampus masih sangat terbatas dan perlu dilakukan penelitian lebih lanjut terutama pada manusia.
Unduhan PDF Tahun Terakhir
Referensi
Abrous, D.N., Koehl, M., Moal, M.L. (2005). Adult neurogenesis: from precursors to network and physiology. Phys Re,. 85,523-569.
Abrous, D.N., Wojtowicz, J. M. (2015). Interaction between neurogenesis and hippocampal memory system: new vistas. Cold Spring Harbor perspectives in biology. 7(6), a018952.
Alawiyah, K., Juliandi, B., Boediono, A., & Sasai, N. (2020). Oral administration of incense resin (Styrax benzoin) extract enhances spatial learning, memory, and dendrite complexity of mice. Brazilian Archives of Biology and Technology, 63.
Alfarisi, H., Wresdiyati, T., Sadiah, S., Juliandi, B. (2022). Nanoextract of Acalypha hispida leaves increases antioxidant defense and suppresses microstructure damage in liver and kidney of diabetic rats. J. Appl. Pharm. Sci, 12(10), 99–108.
Ammon, H. P. (2016). Boswellic acids and their role in chronic inflammatory diseases. Advances in Experimental Medicine and Biology, 928,291-327.
Ayub, M., Hanif, M., Sarfraz, R. et al. (2018). Biological activity of Boswellia serrata Roxb. oleo gum resin essential oil: efects of extraction by supercritical carbon dioxide and traditional methods. Int J Food Prop, 21,808–820
Bano, D., Ankarcrona, M. (2018). Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci. Lett, 663 (2017), 79–85.
Bobińska, K., Szemraj, J., Gałecki, P., Talarowska, M. (2016). The role of MMP genes in recurrent depressive disorders and cognitive functions. Acta Neuropsychiatr, 28(4), 221–231.
Devi, P.S., Adilaxmamma, K., Rao, G., Srilatha, C., Raj, M. (2012). Safety evaluation of alcoholic extract of Boswellia ovalifoliolata stembark in rats. Toxicology International, 19(2),115.
Di Gennaro, A., Carnini, C., Buccellati, C., Ballerio, R., Zarini, S., Fumagalli, F., Viappiani, S., Librizzi, L., Hernandez, A., Murphy, R.C., Constantin, G., De Curtis, M., Folco, G., and Sala, A. (2004). Cysteinyl-leukotriene receptor activation in brain inflammatory reactions and cerebral edema formation: a role for transcellular biosynthesis of cysteinyl leukotrienes. The FASEB Journal, 18 (7), 842–844.
Ebrahimpour, S., Fazeli, M., Mehri, S., Taherianfard, M., dan Hosseinzadeh, H. (2017). Boswellic acid improves cognitive function in a rat model through its antioxidant activity:- neuroprotective effect of boswellic acid. Journal of Pharmacopuncture, 20 (1), 10–1.
Ebrahimpour, S., Fazeli, M., Mehri, S., Taherianfard, M., Hosseinzadeh, H. (2017). Boswellic acid improves cognitive function in a rat model through its antioxidant activity: Neuroprotective effect of boswellic acid. J. Pharmacopuncture, 20(1), 10–17.
El-Keiy, M., Youssef, M.A., Bakry, A., Mohamed, T. (2019). Effect of boswellic acid in Alzheimer’s disease in experimental rat. J. Biosci. Appl. Res. 5(3),278-284. ,
Ferreira-Vieira, H., Guimaraes, I., Silva, F., Ribeiro, F. (2016). Alzheimer’s Disease: Targeting the Cholinergic System. Curr. Neuropharmacol, 14,101–115.
Fordyce, D.E., Wehner, J.M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res. 619,111-119.
Forouzanfar, F., Hosseinzadeh, H., Ebrahimzadeh, A., Bideskan, Sadeghnia,H.R. (2016). Aqueous and Ethanolic Extracts of Boswellia serrata Protect Against Focal Cerebral Ischemia and Reperfusion Injury in Rats. Phyther. Res. 30(12), 1954–1967.
Förster, E., Bock, H., Herz, J., Chai, X., Frotscher, M., Zhao, S. (2010). Emerging Topics in Reelin Function. Eur. J. Neurosci. 31(9), 1511-1518.
Gerbeth, K., Hüsch, J., Fricker, G., Werz, O., Schubert-Zsilavecz, M., & Abdel-Tawab, M. (2013). In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia, 84, 99–106.
Guedes, J., Cardoso, A. L. C., Pedroso De Lima, M. C. (2013). Involvement of MicroRNA in microglia-mediated immune response. Clin. Dev. Immuno, 2013.
Gunasekaran, V., Avarachan, J., Augustine, A., Khayum, A. (2021). 3-O-Acetyl-11-keto-β-boswellic acid ameliorates acquired, consolidated and recognitive memory deficits through the regulation of hippocampal PPAR γ, MMP9 and MMP2 genes in dementia model. Heliyon, 7(12), p. e08523.
Gupta, I., Gupta, V., Parihar, A., Gupta, S., Lüdtke, R., Safayhi, H., & Ammon, H. P. (1998). Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. European journal of medical research, 3(11),511-514
Hajjar T., et al. (2012). Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal Peroxisome Proliferator Activated Receptors (PPARα and PPARγ) gene expression in rats. BMC Neurosci, 13(1)
Ikonomovic, M. D., Abrahamson, E. E., Uz, T., Manev, H., & DeKosky, S. T. (2008). Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. Journal of Histochemistry & Cytochemistry, 56(12), 1065-1073.
Islam, F., et al. (2013). Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurol. Sci, 34(6), 925–933.
Juliandi, B., Tanemura, K., Igarashi, I., Tominaga, T., Furukawa, Y., Otsuka, M., Moriyama, N., Ikegami, D., Abematsu, M., Sanosaka, T. et al. (2015). Reduced adult hippocampal neurogenesis and cognitive impairments following prenatal treatment of the antiepileptic drug valproic acid. Stem Cell Reports. 5(6),996–1009.
Karima, O., Riazi, G., Yousefi, R., & Movahedi, A. A. M. (2010). The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study). Neurological Sciences, 31, 315-320.
Kasali, A.A., Adio, A.M., Oyedeji, A.O., Eshilokun, A.O., Adefenwa, M. (2002). Volatile constituents of Boswellia serrata Roxb. (Burseraceae) bark. Flavour Fragr J, 17, 462-4.
Kazmi, S., Kafami, L., Ebrahimi, A., Jameie, B., & Joghataiee, M. T. (2011). The effects of Boswellia resin extract on dopaminergic cell line, SK-N-SH, against MPP+-induced neurotoxicity. Basic and Clinical Neuroscience, 3(1), 16-21.
Lewerenz, J., Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases-What is the evidence?. Front. Neurosci, 9, 1–20.
Li, B., Xi, X., Roane, D. S., Ryan, D. H., Martin, R. J. (2003). Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Mol. Brain Res, 113(1-2),139-142.
Lisman, J. E., and Grace, A. A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713. doi: 10.1016/j.neuron.2005.05.002
Lu, C. W., Lin, T. Y., Wang, S. J. (2020). 11-Keto-β-Boswellic Acid Attenuates Glutamate Release and Kainic Acid-Induced Excitotoxicity in the Rat Hippocampus. Planta Med, 86(06), 434–441.
Lugert, S., et al. (2010). Quiescent and active hippocampal neural stem cell with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6, 445-456.
Mahmoudi, A. et al. (2011). Evaluation of systemic administration of Boswellia papyrifera extracts on spatial memory retention in male rats. J. Nat. Med, 65(3–4), 519–525.
Marefati, N., et al. (2020). The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine, 131: 155107.
Minj, E., Upadhayay, S., dan Mehan, S. (2021). Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochemical Research, 46, 2867–2884.
Miranda, Morici, J.F., Zanoni, M.B. Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci, 13, 1–25.
Mohamed, T. M., Youssef, M. A. M., Bakry, A. A., El-Keiy, M.M. (2021). Alzheimer’s disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab. Brain Dis,36(2),255-265.
Panahishokouh, M., Noroozian, M., Mohammadian, F., Khanavi, M., Mirimoghaddam, M., Savar, S. M., ... & Mohebbi, N. (2022). Evaluation of the effectiveness of an herbal formulation of Boswellia sacra Flueck. In improving cognitive and behavioral symptoms in patients with cognitive impairment and alzheimer's disease. Journal of Research in Pharmacy Practice, 11(3), 91.
Poeckel, D., dan Werz, O. (2006). Boswellic acids: biological actions and molecular targets. Current Medicinal Chemistry, 13 (28), 3359–3369.
Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109: 577–585.
Rashan, L., Efferth, T., Bishir, M., Hediyal, T. A., Essa, M. M., & Babu, S. (2023). Acute, genetic, and target organ toxicity profiling of Frankincense essential oil from Boswellia sacra in zebrafish (Danio rerio). Archives of Clinical Toxicology, 5(1), 12-21.
Rashan, L., Hakkim, F.L., Idrees, M. et al. (2019). Boswellia gum resin and essential oils: potential health benefts—an evidence based review. Int J Nutr Pharmacol Neurol Dis, 9:53–71
Rijkers, T., Ogbazghi, W., Wessel, M., Bongers, F. (2006). The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol, 43, 1188-95.
Roy, N.K., Parama, D., Banik, K., Bordoloi, D., Devi, A.K. et al. (2019). An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci, 20(17),4101.
Safayhi, H., Rall, B., Sailer, E. R., dan Ammon, H.P. (1997). Inhibition by boswellic acids of human leukocyte elastase. Journal of Pharmacology and Experimental Therapeutics, 281(1),460-463
Safayhi, H., Sailer, E.R. Anti-inflammatory actions of pentacyclic triterpenes. (1997). Planta Med, 63,487-493.
Sailer, E.R., Subramanian, L.R., Rall, B., Hoernlein, R. F., Ammon, H.P.T., dan Safayhi, H. (1996). Acetyl-11–keto-β-boswellic acid (AKBA): structure requirements for binding and 5–lipoxygenase inhibitory activity. British Journal of Pharmacology, 117 (4), 615–618.
Sajja, R.K. Green, K.N., dan Cucullo, L. (2015). Altered nrf2 signaling mediates hypoglycemiainduced blood–brain barrier endothelial dysfunction in vitro. PLoS One, 10(3), 0122358.
Sandberg, M., Patil, J., D’Angelo, B., Weber, S.G., Mallard, C. (2014). NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology, 79, 298–306.
Sayed, A.S., Gomaa, I.E.O., Bader, M., El Sayed, N. S. E. D. (2017). Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155. Mol. Neurobiol. 55(7), 5798–5808.
Schliebs, R., Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Trans,. 113(11),1625-1644.
Sharifabad, M.H., Esfandiari, E. (2007). A morphometeric study on CA3 hippocampal field in young rats following maternal administration of Boswellia Serrata resin during gestation. Iran J Basic Med Sci, 10,176 82.
Sharifabad, M.H., Esfandiari, E., Alaei, H. (2004). Effects of frankincense aqueous extract during gestational period on increasing power of learning and memory in adult offsprings. J Isfahan Med Sch, 21,16 20.
Shasaltaneh, M. D., Naghdi, N., Ramezani, S., Alizadeh, L., Riazi, G. H. (2021). Protection of Beta Boswellic Acid against Streptozotocin-induced Alzheimer’s Model by Reduction of Tau Phosphorylation Level and Enhancement of Reelin Expression. Planta Med, 88(05),367–379.
Siemoneit, U., Hofmann, B., Kather, N., Lamkemeyer, T., Madlung, J., Franke, L., Schneider, G., Jauch, J., Poeckel, D., dan Werz, O. (2008). Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochemical Pharmacology, 75 (2), 503–513.
Silva-Palacios, A. Ostolga-Chavarría, M., Zazueta, C., dan K¨onigsberg, M. (2018). Nrf2: molecular and epigenetic regulation during aging. Ageing Research Reviews, 47, 31–40.
Singh, P., Chacko, K.M., Aggarwal, M.L., Bhat, B., Khandal, R.K., Sultana, S., Kuruvilla, B.T. et al. (2012). A-90 day gavage safety assessment of Boswellia serrata in rats. Toxicology International 19(3),273.
Syad, A.N., dan Devi, K.P. (2014). Botanics: a potential source of new therapies for Alzheimer’s disease?. Botanics: Targets and Therapy. 4, 11–26.
Syrovets, T., Büchele, B., Gedig, E., Slupsky, J.R., Simmet, T. (2000). Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIα. Mol Pharmacol, 58, 71-81.
Verhoff, M., Seitz, S., Paul, M., Noha, S.M., Jauch, J., Schuster, D., dan Werz, O. (2014). Tetra-and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E2 synthase-1. Journal of Natural Products, 77 (6), 1445–1451.
Wei, C., et al. (2020). Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic. Biol. Med, 150, 96–108.
Werz, O. (2002). 5-lipoxygenase: cellular biology and molecular pharmacology, Current Drug Targets - Inflammation & Allergy, 1 (1), 23–44.
Williams, P., Sorribas, A., & Howes M.-J.R. (2011). Natural products as a source of Alzheimer’s drug leads. Natural Product Reports, 28 (1), 48–77.
Xia, D., Lou, W., Fung, K. M., Wolley, C. L., Suhail, M. M., & Lin, H. K. (2017). Cancer chemopreventive effects of Boswellia sacra gum resin hydrodistillates on invasive urothelial cell carcinoma: report of a case. Integrative cancer therapies, 16(4), 605-611.
Unduhan PDF: 350
Diterbitkan
Cara Mengutip
Tulis nama ilmiah dengan huruf Italic:
Terbitan
Bagian
Hak Cipta (c) 2023 Kamila Alawiyah, Hamzah Alfarisi, Nurul Insani Shullia, Alexander Kurniawan Sariyanto Putera
Artikel ini berlisensi Creative Commons Attribution-ShareAlike 4.0 International License.
Penulis yang menerbitkan di jurnal ini menyetujui persyaratan lisensi hak cipta berikut:
a. Penulis memegang hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah lisensi Creative Commons Attribution-ShareAlike 4.0 International License yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas penulis dan publikasi awal karya dalam jurnal ini.
b. Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mengunggahnya ke penyimpanan institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
c. Penulis diizinkan dan didorong untuk mengunggah karya mereka secara online (misalnya, di repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Tinjau Pengaruh Akses Terbuka).
d. Penulis memegang hak cipta dan mempertahankan hak penerbitan artikel tanpa batasan.