The Potential of Immobilized Bacteria for Pollutant Bioremediation in The Environment: Systematic Review

Authors

  • Yuniar Harvianti Lecture of Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jalan Palembang-Prabumulih, Km 32 Indralaya Ogan Ilir 30662
  • M. Ali Azis Hasan Rizki lecture of Department of Biology, Faculty of Mathematics and Natural Sciences,Universitas Islam Al-Azhar, Jalan Unizar No.20, Turida, Kec.Sandubaya, Mataram, West Nusa Tenggara, Indonesia, 83237

Article Metrics

This article Abstract has been read: 66 times
PDF Downloads: 27 times
Total Galley Downloads: 27 times
Total Views: 93 times

DOI:

https://doi.org/10.24233/biov.11.1.2025.477

Keywords:

Bioremediation , Immobilized Bacteria , Pollutant Degradation , Remediation Environment , Technique Immobilized

Abstract

The Environmental pollution caused by industrial waste including oil spills have become a global issue that requires effective and environmentally friendly solutions. Bioremediation used by bacteria immobilized has been develop as a promising method for pollutant degradation, because it can increase the stability and activity of microorganism under various condition in the environment. This study is a systematic review to evaluate various immobilized technique including adsorption, entrapment, adsorption-embedding, cross linking and the techniques effectiveness in hydrocarbon, crude oil, and heavy metals remediation. This review collates a vast amount of existing literature on the myriad contaminants treated using immobilized bacteria. Based on the reviewed article, the immobilization techniques such as adsorption, adsorption-embedding, entrapment and cross-linking were frequently reported to enhance degradation performance, particularly in crude oil bioremediation. The techniques consistently demonstrated high effectiveness in pollutant degradation across different environmental conditions. The environmental factors, including pH, pollutant concentration and surfactant availability have an important role in the success of bioremediation. Although, this technology enhances bacterial resilience and biodegradation efficiency, the challenges such as the hight cost of immobilization materials and limitations in extreme environment application remain a problem. The optimization techniques and immobilized materials has the potential to provide a sustainable solution for pollutant bioremediation in the environment

Last Year PDF Downloads

Download data is not yet available.

References

Armanu, E. G., Bertoldi, S., Chrzanowski, Ł., Volf, I., Heipieper, H. J., & Eberlein, C. (2025). Benefits of Immobilized Bacteria in Bioremediation of Sites Contaminated with Toxic Organic Compounds. Microorganisms, 13(1), 1–19. https://doi.org/10.3390/microorganisms13010155 DOI: https://doi.org/10.3390/microorganisms13010155

Atakpa, E. O., Zhou, H., Jiang, L., Zhang, D., Li, Y., Zhang, W., & Zhang, C. (2023). Co-culture of Acinetobacter sp. and Scedosporium sp. immobilized beads for optimized biosurfactant production and degradation of crude oil. Environmental Pollution, 335(February), 122365. https://doi.org/10.1016/j.envpol.2023.122365 DOI: https://doi.org/10.1016/j.envpol.2023.122365

Ayele, A., & Godeto, Y. G. (2021). Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/7694157 DOI: https://doi.org/10.1155/2021/7694157

Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5(May), 1–15. https://doi.org/10.3389/fagro.2023.1183691 DOI: https://doi.org/10.3389/fagro.2023.1183691

Bebić, J., Banjanac, K., Ćorović, M., Milivojević, A., Simović, M., Marinković, A., & Bezbradica, D. (2020). Immobilization of laccase from Myceliophthora thermophila on functionalized silica nanoparticles: Optimization and application in lindane degradation. Chinese Journal of Chemical Engineering, 28(4), 1136–1144. https://doi.org/10.1016/j.cjche.2019.12.025 DOI: https://doi.org/10.1016/j.cjche.2019.12.025

Bouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2019). Immobilization of microbial cells for the biotreatment of wastewater: A review. In Environmental Chemistry Letters (Vol. 17, Issue 1, pp. 241–257). Springer Verlag. https://doi.org/10.1007/s10311-018-0795-7 DOI: https://doi.org/10.1007/s10311-018-0795-7

Candry, P., Godfrey, B. J., Wang, Z., Sabba, F., Dieppa, E., Fudge, J., Balogun, O., Wells, G., & Winkler, M. K. H. (2022). Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-25111-7 DOI: https://doi.org/10.1038/s41598-022-25111-7

Chen, Q., Li, J., Liu, M., Sun, H., & Bao, M. (2017). Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174445 DOI: https://doi.org/10.1371/journal.pone.0174445

Cui, J. Q., He, Q. S., Liu, M. H., Chen, H., Sun, M. B., & Wen, J. P. (2020). Comparative study on different remediation strategies applied in petroleum-contaminated soils. International Journal of Environmental Research and Public Health, 17(5), 1–17. https://doi.org/10.3390/ijerph17051606 DOI: https://doi.org/10.3390/ijerph17051606

Du, B., Cui, H., Gu, C., Li, Z., & Zhou, J. (2022). Dynamic Behaviors of Newly Deposited Atmospheric Heavy Metals in the Soil-Pak Choi System. Environmental Science and Technology, 56(17), 12734–12744.https://doi.org/10.1021/acs.est.2c04062 DOI: https://doi.org/10.1021/acs.est.2c04062

Fareed, A., Riaz, S., Nawaz, I., Iqbal, M., Ahmed, R., Hussain, J., Hussain, A., Rashid, A., & Naqvi, T. A. (2019). Immobilized cells of a novel bacterium increased the degradation of N-methylated carbamates under low temperature conditions. Heliyon, 5(11), e02740. https://doi.org/10.1016/j.heliyon.2019.e02740 DOI: https://doi.org/10.1016/j.heliyon.2019.e02740

Fu, X., Zhang, Q., Gao, Y., Wu, Y., Xiao, X., Li, L., Xue, J., & Liu, B. (2019). Degradation potential of petroleum hydrocarbon-degrading bacteria immobilized on different carriers in marine environment. Petroleum Science and Technology, 37(12), 1417–1424. https://doi.org/10.1080/10916466.2019.1587465 DOI: https://doi.org/10.1080/10916466.2019.1587465

Jalloul, G., Al-Mousawi, A., Chocr, F., Merhi, A., Awala, H., & Boyadjian, C. (2022). Fe-Sensitized Zeolite Supported TiO2 for the Degradation of Tetracycline Using Blue LED Irradiation. Frontiers in Environmental Science, 10(May), 1–13. https://doi.org/10.3389/fenvs.2022.873257 DOI: https://doi.org/10.3389/fenvs.2022.873257

Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/9823362 DOI: https://doi.org/10.1155/2021/9823362

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar, A., Rajput, V. D., Yadav, A. N., Singh, K., Singh, J., Sayyed, R. Z., Arora, N. K., & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. In Environmental Science and Pollution Research (Vol. 28, Issue 20, pp. 24917–24939). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-021-13252-7 DOI: https://doi.org/10.1007/s11356-021-13252-7

Laothamteep, Natthariga., Naloka, K., & Onruthai, P. (2022). Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms. Environmental Pollution, 292(part A). https://doi.org/https://doi.org/10.1016/j.envpol.2021.118309 DOI: https://doi.org/10.1016/j.envpol.2021.118309

Li, Y., Chen, H., Li, W., Xi, B., & Huang, C. (2025). A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor. Journal of Hazardous Materials, 486. https://doi.org/10.1016/j.jhazmat.2025.137144 DOI: https://doi.org/10.1016/j.jhazmat.2025.137144

Liu, Q., Wang, Y., Sun, S., Tang, F., Chen, H., Chen, S., Zhao, C., & Li, L. (2023). A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil. Chemosphere, 313(September 2022), 137367.https://doi.org/10.1016/j.chemosphere.2022.137367 DOI: https://doi.org/10.1016/j.chemosphere.2022.137367

Luo, Q., Hou, D., Jiang, D., & Chen, W. (2021). Bioremediation of marine oil spills by immobilized oil-degrading bacteria and nutrition emulsion. Biodegradation, 32(2), 165–177. https://doi.org/10.1007/s10532-021-09930-5 DOI: https://doi.org/10.1007/s10532-021-09930-5

Mafi, M., Kushmaro, A., Greenblatt, C., Agarwal, S., & Greiner, A. (2021). Poly(Vinyl Alcohol)-Hydrogel Microparticles with Soft Barrier Shell for the Encapsulation of Micrococcus luteus. Macromolecular Bioscience, 21(5). https://doi.org/10.1002/mabi.202000419 DOI: https://doi.org/10.1002/mabi.202000419

Maglione, G., Zinno, P., Tropea, A., Mussagy, C. U., Dufossé, L., Giuffrida, D., & Mondello, A. (2024). Microbes’ role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiology, 10(3), 723–755. https://doi.org/10.3934/microbiol.2024033 DOI: https://doi.org/10.3934/microbiol.2024033

Manikandan, S. K., Pallavi, P., Shetty, K., Bhattacharjee, D., Giannakoudakis, D. A., Katsoyiannis, I. A., & Nair, V. (2023). Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. Molecules, 28(2).https://doi.org/10.3390/molecules28020719 DOI: https://doi.org/10.3390/molecules28020719

Mehrotra, T., Dev, S., Banerjee, A., Chatterjee, A., Singh, R., & Aggarwal, S. (2021). Use of immobilized bacteria for environmental bioremediation: A review. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 5). Elsevier Ltd. https://doi.org/10.1016/j.jece.2021.105920 DOI: https://doi.org/10.1016/j.jece.2021.105920

Muangchinda, C., Chamcheun, C., Sawatsing, R., & Pinyakong, O. (2018). Diesel oil removal by Serratia sp. W4-01 immobilized in chitosan-activated carbon beads. Environmental Science and Pollution Research, 25(27), 26927–26938. https://doi.org/10.1007/s11356-018-2742-3 DOI: https://doi.org/10.1007/s11356-018-2742-3

Nhi-Cong, L. T., Lien, D. T., Mai, C. T. N., Linh, N. V., Lich, N. Q., Ha, H. P., Van Quyen, D., Tang, D. Y. Y., & Show, P. L. (2021). Advanced materials for immobilization of purple phototrophic bacteria in bioremediation of oil-polluted wastewater. Chemosphere, 278, 130464. https://doi.org/10.1016/j.chemosphere.2021.130464 DOI: https://doi.org/10.1016/j.chemosphere.2021.130464

Pan, Z., Wu, Y., Zhai, Q., Tang, Y., Liu, X., Xu, X., Liang, S., & Zhang, H. (2023). Immobilization of bacterial mixture of Klebsiella variicola FH-1 and Arthrobacter sp. NJ-1 enhances the bioremediation of atrazine-polluted soil environments. Frontiers in Microbiology, 14(February), 1–16. https://doi.org/10.3389/fmicb.2023.1056264 DOI: https://doi.org/10.3389/fmicb.2023.1056264

Parthipan, P., Cheng, L., Rajasekar, A., Parthiba Karthikeyan, O., & Rahman, P. K. S. M. (2022). Editorial: Biosurfactants—A next generation biomolecules for enhanced biodegradation of organic pollutants. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.947801 DOI: https://doi.org/10.3389/fmicb.2022.947801

Qi, X., Zhu, M., Yuan, Y., Dang, Z., & Yin, H. (2023). Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. Journal of Hazardous Materials, 460. https://doi.org/10.1016/j.jhazmat.2023.132408 DOI: https://doi.org/10.1016/j.jhazmat.2023.132408

Raj, A., Kumar, A., & Dames, J. F. (2021). Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Frontiers in Microbiology, 12(December). https://doi.org/10.3389/fmicb.2021.791723 DOI: https://doi.org/10.3389/fmicb.2021.791723

Rungsihiranrut, A., Muangchinda, C., Naloka, K., Dechsakulwatana, C., & Pinyakong, O. (2023). Simultaneous immobilization enhances synergistic interactions and crude oil removal of bacterial consortium. Chemosphere, 340(February), 139934. https://doi.org/10.1016/j.chemosphere.2023.139934 DOI: https://doi.org/10.1016/j.chemosphere.2023.139934

Sabadash, V., Konovalov, O., & Nowik-Zajaç, A. (2023). Study of the Process of Adsorption of Petroleum Products Methods of Multivariate Cluster Analysis. Environmental Problems, 8(3), 185–191. https://doi.org/10.23939/ep2023.03.185 DOI: https://doi.org/10.23939/ep2023.03.185

Selcuk, A. A. (2019). A Guide for Systematic Reviews: PRISMA. Turkish Archives of Otorhinolaryngology, 57(1), 57–58. https://doi.org/10.5152/tao.2019.4058 DOI: https://doi.org/10.5152/tao.2019.4058

Singh, A., Manikandan, S. K., & Nair, V. (2024). Mechanistic studies on bioremediation of dye using Aeromonas veronii immobilized peanut shell biochar. Environmental Research, 262. https://doi.org/10.1016/j.envres.2024.119908 DOI: https://doi.org/10.1016/j.envres.2024.119908

Song, W., Ding, S., Zhou, L., Li, N., Zhang, Y., Li, H., Ding, J., & Lu, J. (2022). The performance of co-immobilized strains isolated from activated sludge combined with Scenedesmus quadricauda to remove nutrients and organics in black odorous water. Bioresource Technology, 345. https://doi.org/10.1016/j.biortech.2021.126571 DOI: https://doi.org/10.1016/j.biortech.2021.126571

Stanley, M., Palace, V., Grosshans, R., & Levin, D. B. (2022). Floating treatment wetlands for the bioremediation of oil spills: A review. Journal of Environmental Management, 317(May), 115416. https://doi.org/10.1016/j.jenvman.2022.115416 DOI: https://doi.org/10.1016/j.jenvman.2022.115416

Sun, J., Shi, S., Zheng, J., Zheng, X., Xu, X., Liu, K., Wei, P., Chen, Q., Liu, F., Zhao, C., & Zhang, X. (2024). An immobilized composite microbial material combined with slow release agents enhances oil-contaminated groundwater remediation. Science of the Total Environment, 919(February), 170762. https://doi.org/10.1016/j.scitotenv.2024.170762 DOI: https://doi.org/10.1016/j.scitotenv.2024.170762

Tedja, B., Al Musadieq, M., Kusumawati, A., & Yulianto, E. (2024). Systematic literature review using PRISMA: exploring the influence of service quality and perceived value on satisfaction and intention to continue relationship. Future BusinessJournal,10(1).https://doi.org/10.1186/s43093-024-00326-4 DOI: https://doi.org/10.1186/s43093-024-00326-4

Verma, Y., Sharma, G., Kumar, A., Wang, T., Dhiman, P., & Mola, G. T. (2024). Zeolites and their composites as novel remediation agent for antibiotics: A review. Environmental Engineering Research, 30(1), 240062–0. https://doi.org/10.4491/eer.2024.062 DOI: https://doi.org/10.4491/eer.2024.062

Wijayanti, I. L. D., & Mahatmanti, F. W. (2022). Synthesis of Chitosan/Activated Carbon Composite Beads as an Adsorbent of Pb(II) and Cu(II) ions in Aqueous Solution: A Review. Indonesian Journal of Chemical Science, 11(2), 190–197. https://doi.org/10.15294/ijcs.v11i2.54943 DOI: https://doi.org/10.15294/ijcs.v11i2.54943

Wu, P., Wang, Z., Bhatnagar, A., Jeyakumar, P., Wang, H., Wang, Y., & Li, X. (2021). Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. In Journal of Hazardous Materials (Vol. 416). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2021.125915 DOI: https://doi.org/10.1016/j.jhazmat.2021.125915

Xia, M., Niu, Q., Qu, X., Zhang, C., Qu, X., Li, H., & Yang, C. (2023). Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar. Environmental Pollution, 339.https://doi.org/10.1016/j.envpol.2023.122728 DOI: https://doi.org/10.1016/j.envpol.2023.122728

Xue, J., Lu, X., Wei, L., Zha, X., & Xu, W. (2025). Enhanced Removal of Nitrate and Tetracycline by Bacillus cereus W2 Immobilized on Biochar. Water (Switzerland), 17(3). https://doi.org/10.3390/w17030380 DOI: https://doi.org/10.3390/w17030380

Yamaguchi, H., & Miyazaki, M. (2024). Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules (Basel, Switzerland), 29(9). https://doi.org/10.3390/molecules29092021 DOI: https://doi.org/10.3390/molecules29092021

Yu, Y., Guo, H., Zhong, Z., Lu, Z., zhu, X., Li, Z., & Chang, Z. (2023). Enhanced removal of tetrabromobisphenol A by Burkholderia cepacian Y17 immobilized on biochar. Ecotoxicology and Environmental Safety,249.https://doi.org/10.1016/j.ecoenv.2022.114450 DOI: https://doi.org/10.1016/j.ecoenv.2022.114450

Zhang, B., Ni, Y., Liu, J., Yan, T., Zhu, X., Li, Q. X., Hua, R., Pan, D., & Wu, X. (2020). Bead-immobilized Pseudomonas stutzeri Y2 prolongs functions to degrade s-triazine herbicides in industrial wastewater and maize fields. Science of the Total Environment, 731. https://doi.org/10.1016/j.scitotenv.2020.139183 DOI: https://doi.org/10.1016/j.scitotenv.2020.139183

Zhang, C., Li, J., Wu, X., Long, Y., An, H., Pan, X., Li, M., Dong, F., & Zheng, Y. (2020). Rapid degradation of dimethomorph in polluted water and soil by Bacillus cereus WL08 immobilized on bamboo charcoal–sodium alginate. Journal of Hazardous Materials, 398. https://doi.org/10.1016/j.jhazmat.2020.122806 DOI: https://doi.org/10.1016/j.jhazmat.2020.122806

Zhang, X., Wu, M., Zhang, T., Gao, H., Ou, Y., & Li, M. (2024). Effects of biochar immobilization of Serratia sp. F4 OR414381 on bioremediation of petroleum contamination and bacterial community composition in loess soil. Journal of Hazardous Materials, 470(February), 134137. https://doi.org/10.1016/j.jhazmat.2024.134137 DOI: https://doi.org/10.1016/j.jhazmat.2024.134137

Published

21-04-2025

How to Cite
Write scientific names with Italic fonts:

Harvianti, Y., & M. Ali Azis Hasan Rizki. (2025). The Potential of Immobilized Bacteria for Pollutant Bioremediation in The Environment: Systematic Review. BIOVALENTIA: Biological Research Journal, 11(1), 67–82. https://doi.org/10.24233/biov.11.1.2025.477

Issue

Section

Vol 11, No 1 (2025): May 2025