A Physiological Status Affect Reptiles Thermoregulation’s Strategy: A Review
DOI:
https://doi.org/10.24233/biov.11.1.2025.459Keywords:
behaviour , microclimate , Climate Change , Physiology , Reptiles , ThermoregulationAbstract
As an ectotherm class, reptiles' thermoregulation has unique mechanisms through the combination of physiological traits, behavioral adjustments, and environmental aspects. Reptiles need to do thermoregulation since their body temperature is affected by environmental aspects. Reptiles experience physiological status, which plays an important role in thermoregulatory behavior. This study explores the response of reptiles' thermoregulation strategy under various physiological states, representing facts about the complex thermoregulation mechanism. Specific physiological statuses such as life stage, reproduction status, immune and health system, dehydration, and digestive have been deeply explored by researchers to identify the effects of these traits on reptiles' thermoregulation strategies. These traits significantly affect reptiles' body temperature, such as having low Tb under the dehydration state and choosing higher Tb to promote food digestion under the digestive state. However, the consistency of these results may vary among reptile species that refer more to behavioral adjustment and mating process rather than physiological status. Different life stages and reproduction statuses also influence reptiles' thermoregulation strategy and implicate the evolutionary mechanism for gravid females to obtain a thermally suitable environment, especially for their embryos. Under behavioral adjustments, reptiles alter microhabitat selection to encounter low thermal environments such as water desiccation or climate change threats. Further research that combines physiological traits, behavioral adjustment, and environmental aspects through a biophysical model can contribute to demonstrating how thermoregulation strategies may compromise different physiological statuses. For reptiles, climate change is strongly associated with population loss. Therefore, this study with relevant topics may stand as a proxy for conservation regulation and policymakers to reduce unfavorable thermal environment aspects through habitat degradation.
Last Year PDF Downloads
References
Adolph, S. C. (1990). Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology, 71(1), 315–327.
Alés, R., Acosta, J., Valdez, F., Martínez, T., Acosta, R., Muñoz, M., Fernández, R., & Corrales, L. (2021). Comparative thermal ecophysiology in Pristidactylus scapulatus populations from the Puna region of Argentina. Zoology, 145, 125903.
Angilletta, M., & Werner, Y. (1998). Australian geckos do not display diel variation in thermoregulatory behavior. Copeia, 1998(3), 736–742.
Azzolini, J., Roderick, T., & DeNardo, D. (2023). Dehydrated snakes reduce postprandial thermophily. bioRxiv.
Bauwens, D., Hertz, P., & Castilla, A. (1996). Thermoregulation in a lacertid lizard: The relative contributions of distinct behavioral mechanisms. Ecology, 77(6), 1818–1830.
Besson, A., & Cree, A. (2010). A cold–adapted reptile becomes a more effective thermoregulator in a thermally challenging environment. Oecologia, 163(3), 571–581.
Blouin–Demers, G. (2001). An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes (Elaphe obsoleta obsoleta). Journal of Animal Ecology, 70(6), 1006–1013.
Bodineau, T., Chabaud, C., Decencière, B., Agostini, S., Lourdais, O., Meylan, S., & Galliard, J. (2024). Microhabitat humidity rather than food availability drives thermo–hydroregulation responses to drought in a lizard. Oikos.
Bouazza, A., Slimani, T., Mouden, H., Blouin–Demers, G., & Lourdais, O. (2016). Thermal constraints and the influence of reproduction on thermoregulation in a high–altitude gecko (Quedenfeldtia trachyblepharus). Journal of Zoology, 300(1), 36–44.
Braña, F. (1993). Shifts in body temperature and escape behaviour of female Podarcis muralis during pregnancy. Oikos, 66(2), 216–222.
Brown, G. P., & Weatherhead, P. J. (2000). Thermal ecology and sexual size dimorphism in northern water snakes (Nerodia sipedon). Ecological Monographs, 70(2), 311–330.
Cadena, V., & Tattersall, G. (2009). The effect of thermal quality on the thermoregulatory behavior of the bearded dragon (Pogona vitticeps): Influences of methodological assessment. Physiological and Biochemical Zoology, 82(3), 203–217.
Camacho, A., Brunes, T., & Rodrigues, M. (2023). Dehydration alters behavioral thermoregulation and the geography of climatic vulnerability in two Amazonian lizards. PLoS ONE, 18(1), e0281584.
Chen, T.–Y., Richard, R., Lin, T.–E., & Huang, S.–P. (2021). Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. Journal of Thermal Biology, 98, 102948.
Clark, T., Butler, P., & Frappell, P. (2005). Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard (Varanus rosenbergi). Journal of Experimental Biology, 208(12), 2269–2276.
Cordero, G., Telemeco, R., & Gangloff, E. (2018). Reptile embryos are not capable of behavioral thermoregulation in the egg. Evolution & Development, 20(1), 40–47.
Corkery, I., Bell, B., & Nelson, N. (2018). Thermoregulation of a temperate reptile in a forested habitat. Zoology, 127, 63–69.
Cox, C., Logan, M., Bryan, O., Kaur, D., Leung, E., McCormack, J., McGinn, J., Miller, L., Robinson, C., Salem, J., Scheid, J., Warzinski, T., & Chung, A. (2018). Do ring–necked snakes choose retreat sites based upon thermal preferences? Journal of Thermal Biology, 71, 232–236.
Crowley, S. (1987). The effect of desiccation upon the preferred body temperature and activity level of the lizard Sceloporus undulatus. Copeia, 1987(1), 25–32.
Diele–Viegas, L., Vitt, L., Sinervo, B., Colli, G., Werneck, F., Miles, D., Magnusson, W., Santos, J., Sette, C., Caetano, G., Pontes, E., & Ávila–Pires, T. (2018). Thermal physiology of Amazonian lizards (Reptilia: Squamata). PLoS ONE, 13(2), e0192834.
Dorcas, M., Peterson, C., & Flint, M. (1997). The thermal biology of digestion in rubber boas (Charina bottae): Physiology, behavior, and environmental constraints. Physiological Zoology, 70(3), 292–300.
Downs, C., Greaver, C., & Taylor, R. (2008). Body temperature and basking behavior of Nile crocodiles (Crocodylus niloticus) during winter. Journal of Thermal Biology, 33(4), 185–192.
Durán, F., Boretto, J., & Ibargüengoytía, N. (2020). Decrease in preferred temperature in response to an immune challenge in lizards from cold environments in Patagonia, Argentina. Journal of Thermal Biology, 93, 102706.
Durán, F., Boretto, J., Becker, L., & Ibargüengoytía, N. (2023). Effects of an immune challenge on the thermal preferences of adult and newborn Liolaemus lizards from Patagonia, Argentina. Anais da Academia Brasileira de Ciências, 95(2), e20201923.
Fernández–Rodríguez, I., Barroso, F., & Carretero, M. (2021). An integrative analysis of the short–term effects of tail autotomy on thermoregulation and dehydration rates in wall lizards. Journal of Thermal Biology, 99, 102976.
Fierro–Estrada, N., González, Y., Miles, D., Gómez, M., García, A., Salgado–Ugarte, I., & Cruz, F. (2019). Thermoregulation of the lizard Barisia imbricata at altitudinal extremes. Amphibia–Reptilia, 40(4), 507–518.
Figueroa–Huitrón, R., Díaz–Martínez, E., Méndez de la Cruz, F., & Pérez–Mendoza, H. (2024). Thermoregulation and activity patterns of three species of snakes with different lifestyles in central Mexico. Amphibia–Reptilia.
Fleming, K., Perrault, J., Stacy, N., Coppenrath, C., & Gainsbury, A. (2020). Heat, health and hatchlings: Associations of in situ nest temperatures with morphological and physiological characteristics of loggerhead sea turtle hatchlings from Florida. Conservation Physiology, 8(1), coaa046.
Galeano, M., & Espinosa, M. (2017). Thermoregulation in the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) at high elevation in the Eastern Cordillera of Colombia. Iheringia Série Zoologia, 107(1), 1–8.
Gangloff, E., Holden, K., Telemeco, R., Baumgard, L., & Bronikowski, A. (2016). Hormonal and metabolic responses to upper temperature extremes in divergent life–history ecotypes of a garter snake. Journal of Experimental Biology, 219(18), 2944–2954.
Glanville, E., & Seebacher, F. (2006). Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behavior in an ectotherm. Journal of Experimental Biology, 209(24), 4869–4877.
Grigg, G., Beard, L., & Augee, M. (2005). Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology: The evolution of endothermy and its diversity in mammals and birds. Annual Review of Physiology, 57, 69–95.
Huang, S.–P., Chiou, C.–R., Lin, T.–E., Tu, M.–C., Lin, C.–C., & Porter, W. P. (2013). Future advantages in energetics, activity time, and habitats predicted in a high–altitude pit viper with climate warming. Functional Ecology, 27(2), 446–458.
Huang, S.–P., Lin, Y.–C., Lin, T.–E., & Richard, R. (2020). Thermal physiology explains the elevational range for a lizard, Eutropis longicaudata, in Taiwan. Journal of Thermal Biology, 93, 102730.
Huang, S.–P., Porter, W. P., Tu, M.–C., & Chiou, C.–R. (2014). Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high–elevation lizard. Oecologia, 175, 25–35.
Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In C. Gans & F. H. Pough (Eds.), Biology of the Reptilia (Vol. 12, pp. 25–74). Academic Press.
Huey, R. B., & Bennett, A. F. (1987). Phylogenetic studies of coadaptation: Preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41(6), 1098–1115.
Johnson, N., Lymburner, A., & Blouin–Demers, G. (2019). The impact of ectoparasitism on thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii). Canadian Journal of Zoology, 97(8), 655–661.
Juri, L., Chiaraviglio, M., & Cardozo, G. (2018). Do female reproductive stage and phenotype influence thermal requirements in an oviparous lizard?. Journal of Thermal Biology, 71, 202–208.
Karameta, E., Gavriilidi, I., Sfenthourakis, S., & Pafilis, P. (2023). Seasonal variation in the thermoregulation pattern of an insular agamid lizard. Animals, 13(20), 3195.
Kearney, M. (2012). Metabolic theory, life history and the distribution of a terrestrial ectotherm. Functional Ecology, 26, 167–179.
Kearney, M. R., & Porter, W. P. (2020). NicheMapR–an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models. Ecography, 43, 85–96.
Khan, J., Richardson, J., & Tattersall, G. (2010). Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps). Physiology & Behavior, 100(2), 180–186.
Ladyman, M., & Bradshaw, D. (2003). The influence of dehydration on the thermal preferences of the Western tiger snake (Notechis scutatus). Journal of Comparative Physiology B, 173(3), 239–246.
Lang, J. (1981). Thermal preferences of hatchling New Guinea crocodiles: Effects of feeding and ontogeny. Journal of Thermal Biology, 6(2), 73–78.
Last, K., Malte, H., Rindom, E., Guagnoni, I., & Wang, T. (2024). Proportional increment of oxygen consumption, heart rate, and core body temperature in the digesting Python bivittatus. The Journal of Experimental Biology, 227(19).
Lelièvre, H., Blouin–Demers, G., Pinaud, D., Lisse, H., Bonnet, X., & Lourdais, O. (2011). Contrasted thermal preferences translate into divergences in habitat use and realized performance in two sympatric snakes. Journal of Zoology, 284(4), 265–275.
Licht, P. (1972). Environmental physiology of reptilian breeding cycles: Role of temperature. General and Comparative Endocrinology, 3(4), 477–488.
Lin, C.–X., Zhang, L., & Ji, X. (2008). Influence of pregnancy on locomotor and feeding performances of the skink Mabuya multifasciata: Why do females shift thermal preferences when pregnant? Zoology, 111(3), 188–195.
Lopes, A., Monteiro, D., & Kalinin, A. (2021). Effects of change in temperature on the cardiac contractility of broad–snouted caiman (Caiman latirostris) during digestion. Journal of Experimental Zoology, 335(6), 417–425.
Lourdais, O., Heulin, B., & DeNardo, D. (2008). Thermoregulation during gravidity in the children's python (Antaresia childreni): A test of the preadaptation hypothesis for maternal thermophily in snakes. Biological Journal of the Linnean Society, 93(3), 499–508.
McBride, M., & Hernandez–Divers, S. J. (2004). Nursing care of lizards. Veterinary Clinics of North America: Exotic Animal Practice, 7(2), 375–390.
Molina, F., & Leynaud, G. (2017). Thermoconformity strategy in the freshwater turtle Hydromedusa tectifera (Testudines, Chelidae) in its southern distribution area. Journal of Thermal Biology, 69, 178–183.
Muñoz, M., Stimola, M., Algar, A., Conover, A., Rodriguez, A., Landestoy, M., Bakken, G., & Losos, J. (2014). Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society B: Biological Sciences, 281(1778).
Muri, D., Schuerch, J., Trim, N., Golay, J., Baillifard, A., Taher, A., & Dubey, S. (2015). Thermoregulation and microhabitat choice in the polymorphic asp viper (Vipera aspis). Journal of Thermal Biology, 53, 107–112.
Nordberg, E., & Schwarzkopf, L. (2019). Heat seekers: A tropical nocturnal lizard uses behavioral thermoregulation to exploit rare microclimates at night. Journal of Thermal Biology, 82, 107–114.
Oliveira, P., Gomes, V., Riaño, G., & Rato, C. (2022). Ontogenic differences and sexual dimorphism of locomotor performance in a nocturnal gecko (Tarentola mauritanica). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology.
Pérez, D., De Carvalho, J., & Navas, C. (2021). Effects of food intake and hydration state on behavioral thermoregulation and locomotor activity in the tropidurid lizard Tropidurus catalanensis. Journal of Experimental Biology, 224.
Peterson, C. (1987). Daily variation in the body temperatures of free–ranging garter snakes. Ecology, 68(1), 160–169.
Pettersen, A., Feiner, N., Noble, D., While, G., Uller, T., & Cornwallis, C. (2023). Maternal behavioral thermoregulation facilitated evolutionary transitions from egg–laying to live birth. Evolution Letters, 7(4), 351–360.
Rock, J., Andrews, R., & Cree, A. (2000). Effects of reproductive condition, season, and site on selected temperatures of a viviparous gecko. Physiological and Biochemical Zoology, 73(3), 344–355.
Lozano–Aguilar, L., Altamirano–Benavides, M., & La Cruz, F. (2021). Thermal ecophysiology of Basiliscus galeritus in two populations at different altitudes: Does the crest participate actively in thermoregulation? Journal of Thermal Biology, 99, 102980.
Rowe, J. W., George, T. M., Martin, C. E., & Mulligan, W. P. (2021). Thermal ecology of northern water snakes (Nerodia sipedon) in a northern wetland in central Michigan. Journal of Thermal Biology, 105, 10342.
Rozen–Rechels, D., Badiane, A., Agostini, S., Meylan, S., & Galliard, J. (2020). Water restriction induces behavioral fight but impairs thermoregulation in a dry–skinned ectotherm. Oikos.
Rozen–Rechels, D., Dupoué, A., Lourdais, O., Chamaillé–Jammes, S., Meylan, S., Clobert, J., & Galliard, J. (2019). When water interacts with temperature: Ecological and evolutionary implications of thermo–hydroregulation in terrestrial ectotherms. Ecology and Evolution, 9(18), 10029–10043.
Shen, J., Meng, F., Zhang, Y., & Du, W. (2013). Field body temperature and thermal preference of the big–headed turtle (Platysternon megacephalum). Current Zoology, 59(5), 626–632.
Shine, R., & Harlow, P. (1993). Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia, 96(1), 122–127.
Shine, R., Harlow, P., Elphick, M., Olsson, M., & Mason, R. (2000). Conflicts between courtship and thermoregulation: The thermal ecology of amorous male garter snakes (Thamnophis sirtalis parietalis). Physiological and Biochemical Zoology, 73(4), 508–516.
Stanton–Jones, W., Parusnath, S., & Alexander, G. (2018). The impact of posture and basking orientation on thermoregulation in the sungazer (Smaug giganteus). Journal of Thermal Biology, 75, 45–53.
Tattersall, G., Cadena, V., & Skinner, M. (2006). Respiratory cooling and thermoregulatory coupling in reptiles. Respiratory Physiology & Neurobiology, 154(3), 302–318.
Toledo, L., Abe, A., & Andrade, D. (2003). Temperature and meal size effects on the postprandial metabolism and energetics in a boid snake. Physiological and Biochemical Zoology, 76(2), 240–246.
Tomlinson, S. (2019). The mathematics of thermal sub–optimality: Nonlinear regression characterization of thermal performance of reptile metabolic rates. Journal of Thermal Biology, 81, 49–58.
Trochet, A., Dupoué, A., Souchet, J., Bertrand, R., Deluen, M., Murarasu, S., Calvez, O., Martínez–Silvestre, A., Verdaguer–Foz, I., Darnet, E., Chevalier, H., Mossoll–Torres, M., Guillaume, O., & Aubret, F. (2018). Variation of preferred body temperatures along an altitudinal gradient: A multi–species study. Journal of Thermal Biology, 77, 38–44.
Tu, M., & Hutchison, V. (1994). Influence of pregnancy on thermoregulation of water snakes (Nerodia rhombifera). Journal of Thermal Biology, 19(4), 255–259.
Van Berkel, J., & Clusella–Trullas, S. (2018). Behavioral thermoregulation is highly repeatable and unaffected by digestive status in Agama atra. Integrative Zoology, 13(4), 482–493.
Wang, T., Zaar, M., Arvedsen, S., Vedel–Smith, C., & Overgaard, J. (2002). Effects of temperature on the metabolic response to feeding in Python molurus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 519–527.
Webb, J., & Shine, R. (1998). Thermoregulation by a nocturnal elapid snake (Hoplocephalus bungaroides) in southeastern Australia. Physiological Zoology, 71(6), 680–692.
Wu, M., Hu, L., Dang, W., Lu, H., & Du, W. (2013). Effect of thermal acclimation on thermal preference, resistance, and locomotor performance of hatchling soft–shelled turtles. Current Zoology, 59(6), 718–724.
Xu, W., Dang, W., Geng, J., & Lu, H. (2015). Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles (Mauremys reevesii) acclimated to different temperatures. Journal of Thermal Biology, 53, 119–124.
Yang, Y., Zeng, Z., Xing, K., Li, S., Yang, C., & Du, W. (2020). Behavioral thermoregulation by the endangered crocodile lizard (Shinisaurus crocodilurus) in captivity. Journal of Thermal Biology, 93, 102731.
Ye, Y., L., Sun, B., Li, T., Wang, Y., Shine, R., & Du, W. (2019). The embryos of turtles can influence their own sexual destinies. Current Biology, 29(18), 2597–2603.e4.
Zena, L. A., Dillon, D., Hunt, K. E., Navas, C. A., Buck, C. L., & Bícego, K. C. (2019). Hormonal correlates of the annual cycle of activity and body temperature in the South American tegu lizard (Salvator merianae). General and Comparative Endocrinology.
PDF Downloads: 4
Published
How to Cite
Write scientific names with Italic fonts:
Issue
Section
Copyright (c) 2025 Yadi Oktariansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
d. Authors hold the copyright and retain publishing right of articles without restrictions.